962 resultados para Low concentration
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper describes an analytical method using high-performance liquid chromatographic (HPLC) separationcoupled with electrochemical detection to detect three dyes, Solvent Blue 14 (SB-14), Solvent Blue 35 (SB-35) andSolvent Red 24 (SR-24). The dyes were eluted and separated using a reversed-phase column (C-8) under isocraticelution with the mobile phase containing a mixture of acetonitrile/ammonium acetate (5.0 mmol L1) at the ratio of75: 25 (v/v). Two sample pretreatment methods were tested and successfully applied to quantify SB14, SB-35 and SR-24 dyes in gasoline samples. The proposed method was simple, fast and suitable to detect and quantify marker dyes ingasoline sample at low concentration.
Resumo:
This is a clinical case report of a patient who presented with dental stains in the buccal and proximal aspects of the anterior teeth. Buccal stains were removed using the enamel microabrasion technique, and vital tooth bleaching with carbamide peroxide was also performed. Restorative procedures employing composite resin were done for a better result in the proximal aspect of teeth. Clinical significance: The authors observed the combination of these esthetic techniques improved the patient's smile. Today, dental esthetics attempts to imitate natural teeth by making them white, well-shaped, and aligned with no spots. This has enabled the development of several esthetic techniques, such as microabrasion to remove dental enamel surface stains and surface irregularities,1-6 and vital tooth bleaching to treat yellowish teeth.7 The enamel microabrasion technique uses different abrasive agents associated with chemical solutions,1,2,4,6 allowing the removal of intrinsic, hard-texture stains, and different coloring spots on the enamel surface, as well as correction of irregularities on the dental buccal surface.1,8 The various microabrasive products include the Opalustre® (Ultradent Products, http://www.ultradent.com)or Prema® Compound (Premier Dental Products, http://www.premusa.com), a low-concentration hydrochloric acid product associated with silica microparticles that is certainly effective for microabrasion technique,4,6,9,10 providing a good safety profile for the patient and professional. The microabrasion technique also promotes micro-reduction on the adamantine surface.4,5,10 In some cases, after its completion, microabrasion may cause teeth to become darker or yellowish because of the thinner remaining enamel surface, leading to more evident observation of the dentinal tissue, which in general determines tooth color. In these clinical conditions, correction of the color pattern of dental elements can be obtained with carbamide peroxide products applied in custom trays, such as the bleaching products Whiteness Perfect at 10% or 16% (FGM Productos Odontologicos, http://www.fgm.ind.br) or Opalescence® at 10% or 15% (Ultradent Products), with a considerable margin of clinical success, provided it is well indicated, well performed, and supervised by the professional.4,6,9,10 Considering all the aforementioned aspects, the authors present a clinical case about a dental-enamel microabrasion technique used to remove buccal enamel surface stains associated with dental vital bleaching and restorative procedures in the proximal aspect of anterior teeth. - See more at: https://www.dentalaegis.com/cced/2010/08/different-esthetic-techniques-used-in-combination-to-recover-the-smile#sthash.McFoH7El.dpuf
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Aspergillus phoenicis biofilms on polyethylene as inert support were used to produce fructooligosaccharides (FOS) in media containing 25% (m/V) of sucrose as a carbon source. The maximum production of total FOS (122 mg/mL), with 68% of 1-kestose and 32% of nystose, was obtained in Khanna medium maintained at 30 degrees C for 48 h under orbital agitation (100 rpm). At high concentrations of sucrose (30%, m/V), the recovery of FOS was higher than that observed at a low concentration (5%, m/V). High levels of FOS (242 mg/mL) were also recovered when using the biofilm in sodium acetate buffer with high sucrose concentration (50%, m/V) for 10 h. When the dried biofilm was reused in a fresh culture medium, there was a recovery of approx. 13.7% of total FOS after 72 h of cultivation at 30 C, and 10% corresponded to 1-kestose. The biofilm morphology, analyzed by scanning electron microscope, revealed a noncompact mycelium structure, with unfilled spaces and channels present among the hyphae. The results obtained in this study show that A. phoenicis biofilms may find application for FOS production in a single-step fermentation process, which is cost-effective in terms of reusability, downstream processing and efficiency.
Resumo:
This paper describes the preparation, characterization, and use of poly (methylene blue) (PMB)-modified glassy carbon electrodes (GCE) (GCE-PMB) in the detection of the thiols L-cysteine (L-CySH) and N-acetyl cysteine (Acy), and the herbicide glyphosate (GLYP) in pH 5.3 aqueous solution. The polymer film prepared by electropolymerization showed different characteristics such as robustness, stability, and redox properties satisfactorily. The surface coverage concentration (Gamma) of PMB was found to be 7.90 x 10(-9) - mol cm(-2). Moreover, we observed strong adhesion of the polymer film to the electrode surface. The results using GCE-PMB as a sensor indicated that this modified electrode exhibited electrocatalytic activity toward the detection of thiols and glyphosate in 0.1 mol L-1 KO (pH 5.3). Meanwhile, strong adsorption of the analytes on the GCE-PMB electrodes was also observed. Otherwise, using a low concentration (1 x 10(-4) mol L-1) of L-cysteine and N-acetyl cysteine and 8.9 x 10(-6) mol L-1 of glyphosate, separately, it was possible to observe a well-defined electrochemical response, thus providing an opportunity to further understand the applicability of PMB as a sensor for amino acid-based molecules. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This study is aimed at evaluating the sublethal effects of endosulfan (EDS) in juvenile common carp (Cyprinus carpio). For this purpose, fish were exposed for 15 days to the technical EDS (95% pure) diluted in dimethyl sulfoxide (DMSO) 0.1% of the total volume in water solution in a semi-static system at sublethal concentration (1 mu g/L). Subsequently, the liver somatic index (LSI) and factor condition (K) were determined. The total cytocrome P450 (CYP), CYP1A isoform, and the ethoxyresorufin-O-deethylase (EROD) activity were determined from the hepatic microsomal fraction as well as the activity of the oxidative stress enzyme system such as superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione peroxidase (GP(X)), glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PDH). Among the parameters assessed, EDS at the sublethal concentration in subchronic exposure caused significant changes in liver somatic indices as well as induction of the phase I biotransformation system and oxidative stress in juvenile common carp (Cyprinus carpio). Thus, it is seen that the use of biochemical biomarkers of environmental contamination in this study proved to be an extremely important tool for detecting the adverse effects of xenobiotics in the aquatic environment, even at low concentration.
Resumo:
The increasing resistance of Rhipicephalus (Boophilus) microplus tick to commercial insecticides requires alternative methods for the control of this cattle plague. The enthomopathogenic fungus Beauveria feline produces destruxins in culture media, cyclic depsipeptides which display an array of biological activities. The present investigation aimed to evaluate the acaricide action of destruxins isolated from B. felina culture media on R. (B.) microplus engorged females. B. felina was grown in MF medium under 19 different growth conditions. HPLC-PDA analysis of chromatographic fractions obtained from the 19 different growth media extracts indicated the presence of destruxins in all lipophylic fractions. Such fractions were combined and subjected to separation by HPLC. Fractions containing distinct destruxins composition were tested against R. (B.) micro plus. Two fractions, composed of destruxin Ed(1) and pseudodestruxin B and/or pseudodestruxin C (fraction P1) as well as by hydroxyhomodestruxin B and/or destruxin D and/or roseotoxin C (fraction P7), displayed 30% and 28.7% acaricidal efficacy, respectively. This activity profile in such low concentration is adequate to consider destruxins as potential leading compounds to be developed for tick biological control. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Pleurotus ostreatus fungus forms an edible mushroom that possesses important nutritional and medicinal properties. Selenium (Se) is essential to human diets and it is in low concentration in the soil, and consequently in food. P. ostreatus was grown in coffee husks enriched with various concentrations of sodium selenite. The biological efficiency of P. ostreatus was affected by the addition of high concentrations of Se. The highest level of Se absorption was obtained by adding 51 mg kg(1) of sodium selenite. The mushrooms from first flush contained more Se than the further flushes. These results demonstrate the great potential of coffee husks in the production of Se-enriched mushrooms and show the ability of this fungus to absorb and biomagnify Se. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Dynamical Elastic Moduli of the Ti-13Nb-13Zr biomaterial alloy were obtained using the mechanical spectroscopy technique. The sample with heat treatment at 1170K for 30 minutes and water quenched with subsequent aging treatment at 670 K for 3 hours (TNZ + WQ + 670 K/3 h), was characterized through decay of free oscillations of the sample in the flexural vibration mode. The spectra of anelastic relaxation (internal friction and frequency) in the temperature range from 300 K to 625 K not revealed the presence of relaxation process. As shown in the literature, the hcp structure usually does not exhibit any relaxation due to the symmetry of the sites in the crystalline lattice, but if there is some relaxation, this only occurs in special cases such as low concentration of zirconium or saturation of the stoichiometric ratio of oxygen for zirconium. Dynamical elastic modulus obtained for TNZ + WQ + 670 K/3 h alloy was 87 GPa at room temperature, which is higher than the value for Ti-13Nb-13Zr alloy (64 GPa) of the literature. This increment may be related to the change of the proportion of α and β phases. Besides that, the presence of precipitates in the alloy after aging treatment hardens the material and reduces its ductility.
Resumo:
This thesis is focused on the metabolomic study of human cancer tissues by ex vivo High Resolution-Magic Angle Spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy. This new technique allows for the acquisition of spectra directly on intact tissues (biopsy or surgery), and it has become very important for integrated metabonomics studies. The objective is to identify metabolites that can be used as markers for the discrimination of the different types of cancer, for the grading, and for the assessment of the evolution of the tumour. Furthermore, an attempt to recognize metabolites, that although involved in the metabolism of tumoral tissues in low concentration, can be important modulators of neoplastic proliferation, was performed. In addition, NMR data was integrated with statistical techniques in order to obtain semi-quantitative information about the metabolite markers. In the case of gliomas, the NMR study was correlated with gene expression of neoplastic tissues. Chapter 1 begins with a general description of a new “omics” study, the metabolomics. The study of metabolism can contribute significantly to biomedical research and, ultimately, to clinical medical practice. This rapidly developing discipline involves the study of the metabolome: the total repertoire of small molecules present in cells, tissues, organs, and biological fluids. Metabolomic approaches are becoming increasingly popular in disease diagnosis and will play an important role on improving our understanding of cancer mechanism. Chapter 2 addresses in more detail the basis of NMR Spectroscopy, presenting the new HR-MAS NMR tool, that is gaining importance in the examination of tumour tissues, and in the assessment of tumour grade. Some advanced chemometric methods were used in an attempt to enhance the interpretation and quantitative information of the HR-MAS NMR data are and presented in chapter 3. Chemometric methods seem to have a high potential in the study of human diseases, as it permits the extraction of new and relevant information from spectroscopic data, allowing a better interpretation of the results. Chapter 4 reports results obtained from HR-MAS NMR analyses performed on different brain tumours: medulloblastoma, meningioms and gliomas. The medulloblastoma study is a case report of primitive neuroectodermal tumor (PNET) localised in the cerebellar region by Magnetic Resonance Imaging (MRI) in a 3-year-old child. In vivo single voxel 1H MRS shows high specificity in detecting the main metabolic alterations in the primitive cerebellar lesion; which consist of very high amounts of the choline-containing compounds and of very low levels of creatine derivatives and N-acetylaspartate. Ex vivo HR-MAS NMR, performed at 9.4 Tesla on the neoplastic specimen collected during surgery, allows the unambiguous identification of several metabolites giving a more in-depth evaluation of the metabolic pattern of the lesion. The ex vivo HR-MAS NMR spectra show higher detail than that obtained in vivo. In addition, the spectroscopic data appear to correlate with some morphological features of the medulloblastoma. The present study shows that ex vivo HR-MAS 1H NMR is able to strongly improve the clinical possibility of in vivo MRS and can be used in conjunction with in vivo spectroscopy for clinical purposes. Three histological subtypes of meningiomas (meningothelial, fibrous and oncocytic) were analysed both by in vivo and ex vivo MRS experiments. The ex vivo HR-MAS investigations are very helpful for the assignment of the in vivo resonances of human meningiomas and for the validation of the quantification procedure of in vivo MR spectra. By using one- and two dimensional experiments, several metabolites in different histological subtypes of meningiomas, were identified. The spectroscopic data confirmed the presence of the typical metabolites of these benign neoplasms and, at the same time, that meningomas with different morphological characteristics have different metabolic profiles, particularly regarding macromolecules and lipids. The profile of total choline metabolites (tCho) and the expression of the Kennedy pathway genes in biopsies of human gliomas were also investigated using HR-MAS NMR, and microfluidic genomic cards. 1H HR-MAS spectra, allowed the resolution and relative quantification by LCModel of the resonances from choline (Cho), phosphorylcholine (PC) and glycerolphorylcholine (GPC), the three main components of the combined tCho peak observed in gliomas by in vivo 1H MRS spectroscopy. All glioma biopsies depicted an increase in tCho as calculated from the addition of Cho, PC and GPC HR-MAS resonances. However, the increase was constantly derived from augmented GPC in low grade NMR gliomas or increased PC content in the high grade gliomas, respectively. This circumstance allowed the unambiguous discrimination of high and low grade gliomas by 1H HR-MAS, which could not be achieved by calculating the tCho/Cr ratio commonly used by in vivo 1H MR spectroscopy. The expression of the genes involved in choline metabolism was investigated in the same biopsies. The present findings offer a convenient procedure to classify accurately glioma grade using 1H HR-MAS, providing in addition the genetic background for the alterations of choline metabolism observed in high and low gliomas grade. Chapter 5 reports the study on human gastrointestinal tract (stomach and colon) neoplasms. The human healthy gastric mucosa, and the characteristics of the biochemical profile of human gastric adenocarcinoma in comparison with that of healthy gastric mucosa were analyzed using ex vivo HR-MAS NMR. Healthy human mucosa is mainly characterized by the presence of small metabolites (more than 50 identified) and macromolecules. The adenocarcinoma spectra were dominated by the presence of signals due to triglycerides, that are usually very low in healthy gastric mucosa. The use of spin-echo experiments enable us to detect some metabolites in the unhealthy tissues and to determine their variation with respect to the healthy ones. Then, the ex vivo HR-MAS NMR analysis was applied to human gastric tissue, to obtain information on the molecular steps involved in the gastric carcinogenesis. A microscopic investigation was also carried out in order to identify and locate the lipids in the cellular and extra-cellular environments. Correlation of the morphological changes detected by transmission (TEM) and scanning (SEM) electron microscopy, with the metabolic profile of gastric mucosa in healthy, gastric atrophy autoimmune diseases (AAG), Helicobacter pylori-related gastritis and adenocarcinoma subjects, were obtained. These ultrastructural studies of AAG and gastric adenocarcinoma revealed lipid intra- and extra-cellularly accumulation associated with a severe prenecrotic hypoxia and mitochondrial degeneration. A deep insight into the metabolic profile of human healthy and neoplastic colon tissues was gained using ex vivo HR-MAS NMR spectroscopy in combination with multivariate methods: Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). The NMR spectra of healthy tissues highlight different metabolic profiles with respect to those of neoplastic and microscopically normal colon specimens (these last obtained at least 15 cm far from the adenocarcinoma). Furthermore, metabolic variations are detected not only for neoplastic tissues with different histological diagnosis, but also for those classified identical by histological analysis. These findings suggest that the same subclass of colon carcinoma is characterized, at a certain degree, by metabolic heterogeneity. The statistical multivariate approach applied to the NMR data is crucial in order to find metabolic markers of the neoplastic state of colon tissues, and to correctly classify the samples. Significant different levels of choline containing compounds, taurine and myoinositol, were observed. Chapter 6 deals with the metabolic profile of normal and tumoral renal human tissues obtained by ex vivo HR-MAS NMR. The spectra of human normal cortex and medulla show the presence of differently distributed osmolytes as markers of physiological renal condition. The marked decrease or disappearance of these metabolites and the high lipid content (triglycerides and cholesteryl esters) is typical of clear cell renal carcinoma (RCC), while papillary RCC is characterized by the absence of lipids and very high amounts of taurine. This research is a contribution to the biochemical classification of renal neoplastic pathologies, especially for RCCs, which can be evaluated by in vivo MRS for clinical purposes. Moreover, these data help to gain a better knowledge of the molecular processes envolved in the onset of renal carcinogenesis.