917 resultados para Gel-filtration
Resumo:
Secretory IgA contributes to humoral defense mechanisms against pathogens targeting mucosal surfaces, and secretory component (SC) fulfills multiple roles in this defense. The aims of this study were to quantify total SC and to analyze the form of free SC in sputa from normal subjects, subjects with asthma, and subjects with cystic fibrosis (CF). Significantly higher levels of SC were detected in CF compared with both other groups. Gel filtration chromatography revealed that SC in CF was relatively degraded. Free SC normally binds interleukin (IL)-8 and inhibits its function. However, in CF sputa, IL-8 binding to intact SC was reduced. Analysis of the total carbohydrate content of free SC signified overglycosylation in CF compared with normal subjects and subjects with asthma. Monosaccharide composition analysis of free SC from CF subjects revealed overfucosylation and undersialylation, in agreement with the reported CF glycosylation phenotype. SC binding to IL-8 did not interfere with the binding of IL-8 to heparin, indicating distinct binding sites on IL-8 for negative regulation of function by SC and heparin. We suggest that defective structure and function of SC contribute to the characteristic sustained inflammatory response in the CF airways.
Resumo:
Angiotensin-converting enzyme (EC3.4.15. I; ACE), isa membrane-bounddipeptidyl carboxypeptidase that mediates the cleavage of the C-terminal dipeptide His-Leu of the decapeptide angiotensin, generating the most powerful endogenous vaso-constricting angiotensin.
Some ACE inhibitors, such as Captopril, have been used as anti-hypertensive drugs. Moreover in recent years, large quantities of ACE inhibitors have been identijied and isolated from peptides derivedfrom food material such as casein, soy protein, jish protein and so on. Functional food with hypotensive effect has been developed on the basis of these works.
Typicalprocedures for screening hypotensive peptides offood origins are separationof products of peptic and tryptic digestion of proteins followed by inhibitory activitydetermination of each fraction. A method developed by Cushman has been the mostwidely used, in which ACE activity is determined by the amount of hippuric acid
generated as a product of enzymatic reaction of ACE with tripeptide of hippuryl-Lhistidyl-L-leucine. Hippuric acid is determined spectrophotometrically at 228 nm after its isolation from the reaction system by ethylacetate extraction, which not only requires alarge quantity of reagent but also results in large error.
An improved method based on Cushman ’s method is proposed in this paper. In this method, an enzymatic reaction system is based on Cushman’s method, while isolation and determination of hippuric acid is performed by medium perjormance gel chromatography on a Toyopearl HW-40s column. Due to the size exclusion nature of the column with somewhat hydrophobic properties, complete separation of four existing fractions in the reaction system is obtained within a smallfraction of the time necessary in Cushman’s method, with ideal reproducibility.
Resumo:
-D-glucosidase (EC 3.2.1.21) is one of the most interesting glycosidases, especially for hydrolysis cellobiose releasing glucose, is last step degradation of cellulose. This function makes the -D-glucosidase is of great interest as a versatile industrial biocatalyst, being critical to various bio-treatment / biorefinery processes, such as bioethanol production. Hen in the report, a -D-glucosidase was extracts from protein extracted of the invertebrate marine Artemia franciscana was purified and characterized with a combination of precipitation with ammonium sulfate (0 - 30%, 30 to 50%, 50 to 80%), the fraction saturated in the range of 30 to 50% (called F-II) was applied in a molecular exclusion chromatography, in Sephacryl S-200, the fractions corresponding to the first peak of activity of -D-glucosidase were gathered and applied in a chromatography of ion exchange in Mono Q; the third peak this protein obtained chromatography, which coincides with the peak of activity of -D-glucosidase was held and applied in a gel filtration chromatography Superose 12 where the first peak protein, which has activity of -D-glucosidase was rechromatography on Superose 12. This enzyme is probably multimerica, consisting of three subunit molecular mass of 52.7 kDa (determined by SDS-PAGE) with native molecular mass of 157 kDa (determined by gel filtration chromatography on Superose 12 under the system FPLC). The enzyme was purified 44.09 times with a recovery of 1.01%. Using up p-nitrophenyl-β-D-glucopiranoside as substrate obtained a Km apparent of 0.229 mM and a Vmax of 1.109 mM.60min-1.mL-1mM. The optimum pH and optimum temperature of catalysis of the synthetic substrate were 5.0 and 45 °C, respectively. The activity of the -D-glucosidase was strongly, inhibited by silver nitrate and N- etylmaleimide, this inhibition indicates the involvement of radical sulfidrila the hydrolysis of synthetic substrate. The -D-glucosidase of Artemia franciscana presented degradativa action on celobiose, lactose and on the synthetic substrate -nitrophenyl-β-D-glucopiranoside indicating potential use of this enzyme in the industry mainly for the production of bioethanol (production of alcohol from the participating cellulose), and production hydrolysate milk (devoid of milk lactose)
Resumo:
Four different sponge species were screened using Ouchterlony agarose gel and immunodiffusion tests to identify cross-reactivity with the polyclonal antibody IgG anti-deglicosilated CvL, a lectin from Cliona varians. Crude extract from the sponge Cinachyrella apion showed cross-reactivity and also a strong haemmaglutinating activity towards human erythrocytes of all ABO groups. Thus, it was submitted to acetone fractionation, IgG anti-deglicosilated CvL Sepharose affinity chromatography, and Fast Protein Liquid Chromatography (FPLC-AKTA) gel filtration on a Superose 6 10 300 column to purify a novel lectin. C. apion lectin (CaL) agglutinated all types of human erythrocytes with preference for papainized type A and O erythrocytes. The haemagglutinating activity is independent of Ca2+, Mg2+ and Mn2+ ions, and it was strongly inhibited by the disaccharide D-lactose, up to a minimum concentration of 6.25 mM. CaL molecular mass determined by FPLC-AKTA gel filtration on a Superose 12 10 300 column and SDS gel electrophoresis was approximately 124 kDa, consisting of eight subunits of 15.5 kDa, assembled by hydrophobic interactions. The lectin was relatively heat- and pH-stable. Leishmania chagasi romastigotes were agglutinated by CaL, indicating that lactose receptors could be presented in this parasite stage. These findings are indicative of the physiological defense roles of CaL and its possible use in the antibiosis of pathogenic protozoa
Resumo:
The fruit fly Ceratitis capitata is considered the most destructive pest of the world fruitculture. Many pest management practices, mainly based on agrochemicals, have been developed to allow the world-wide commerce of fruit. Solutions to decrease the use of synthetic insecticides in agriculture are based on the development of new target-specific compounds which cause less damage to the environment, especially vegetal proteins with insecticidal effects. The aim of this work was to evaluate the deleterious effect of a purified vicilin of E. velutina (EvV) seeds to C. capitata larvae and adult insects and to investigate the mechanisms involved in these effects. EvV was purified, characterized and its deleterious effect was tested in bioassay systems. EvV mechanism of action was determined by immunodetection techniques and fluorescence localization in chitin structures that are present in C. capitata digestory system. EvV is a glycoprotein with affinity to chitin. Its molecular weight, of 216,57 kDa, was determined by gel filtration chromatography in FPLC system. Using SDS-PAGE, it was possible to observe EvV dissociation in two main subunits of 54,8 and 50,8 kDa. When it was submitted to eletrophoresis in native conditions, EvV presented only one band of acid characteristic. The WD50 and LD50 values found in the bioassays were 0,13% and 0,14% (w/w), respectively for the larvae. EvV deleterious effects were related to the binding to chitin structures presented in peritrophic membrane and gut epithelial cells, associated with its low digestibility in C. capitata digestive tract. The results described herein are the first demonstration of the larvicidal effects of plant protein on C. capitata larvae. EvV may be part of the pest management programs, in the toxic bait composition, or an alternative in plant improvement program
Resumo:
A 140,0 kDa lectin was purified and characterized from the mushroom Clavaria cristata. The purification procedures from the crude extract of the mushroom comprised gel filtration chromatography on Sephacryl s200 and ion exchange on Resource Q column. The purified lectin agglutinated all types of human erythrocytes with preference for trypsinized type O erythrocytes. The haemagglutinating activity is dependent of Ca 2+ ions and was strongly inhibited by the glycoprotein bovine submaxillary mucin (BSM) up to the concentration of 0, 125 mg/mL. The C. cristata lectin (CcL) was stable in the pH range of 2,5-11,5 and termostable up to 80 °C. CcL molecular mass determined by gel filtration on a Superose 6 10 300 column was approximately 140,3 kDa. SDS polyacrilamide gel electrophoresis revealed a single band with a molecular mass of approximately 14,5 kDa, when the lectin was heated at 100 ⁰C in the presence or absence of β-mercaptoethanol. CcL induced activation of murine peritoneal macrophages in vitro resulting in the release of nitric oxide (NO), reaching the maximum production at 24 h. In experimental paw oedema model in mice, CcL showed proinflammatory activity being able to induce oedema formation. Cell viability of HepG2, MDA 435 e 3T3 cell lines was examined after 72 h of incubation with CcL in different concentrations (0,5-50 μg/mL). CcL inhibited HepG2 cells growth with an IC50 value of 50 μg/mL. In the present work, the observed immunomodulatory and antiproliferative effects indicate CcL as a possible immunomodulator compound, interfering in the macrophages immune response, taking possible anti-parasitic, anti-tumoral effects or diagnostic and/or therapeutic
Resumo:
Two b-N-acetylhexosaminidases (F11 e F15) were purified from Echinometra lucunter gonads extracts. The purified enzymes were obtained using ammonium sulfate fractionation, followed by gel filtration chromatographies (Sephacryl S-200, Sephadex G-75 and Sephacryl S-200). The F11 fraction was purified 192.47 -fold with a 28.5% yield, and F15 fraction 85.41 -fold with a 32.3% yield. The molecular weights of the fractions were 116 kDa for F11 and 42 kDa for F15 using SDS-PAGE. In Sephacryl S-200, F15 was 84 kDa, indicating that it is a dimeric protein. When p-nitrophenyl-β-D-glycosaminide was used as substrate, we determined an apparent Km of 0.257 mM and Vmax of 0.704 for F11 and for F15 the Km was 0.235 mM and Vmax of 0.9 mM of product liberated by hour. Both enzymes have optimum pH and temperature respectively at 5.0 and 45 °C. The enzymes showed inhibition by silver nitrate, while the glucuronic acid was a potent activator. The high inhibition of F15 by N-etylmaleimide indicates that sulphydril groups are involved in the catalysis of synthetic substrate
Resumo:
Grains and legume seeds are foods that form the basis of the diets of many cultures around the world, winch contritbute to the daily nutrient requirements of humans. Vicilins (7S globulin) are storage proteins found in legume seeds, and may have an additional function constitutive defense of the embryo against pests and pathogens. In this work the vicilin from Anadenanthera macrocarpa - AmV (red-angico), was purified and partially characterized, its effect on development and larval survival and adult emergence of Callosobruchus maculatus was evaluated by determination of LD50, WD50 and ED50 in system bioassay. Purification of vicilin was initiated by the chitin affinity chromatography and then gel filtration (Superdex 75 Tricorn 10x300 mm) FPLC system followed by reverse phase chromatography (C8 phenomenex) on HPLC system. Bioassays WD50 and LD50 for larvae were 0.32% and 0.33% (w:w) respectively, since the ED50 for adults was 0.096%. The probable mechanism of action was evaluated by testing digestibility of AmV in vitro, and observed for the involvement of two fragments vicilins immunoreactive against polyclonal Anti-vicilin from Erythrina velutina (Anti-EvV) about of 22 and 13 kDa chitin binding. The AmV in its native form has been recognized by the anti-EvV, indicating that there is a conserved region in the vicilin and is probably corresponding to the chitin binding domains. These results point to a new vicilin chitin binding that can subsequently be used as a possible biopesticide protein source, in order to control insect pest C. maculatus and confirm literature findings that demonstrate vicilin in the presence of different kinds of ligands to conserved regions chitin not yet characterized
Resumo:
Dissertação de Mestrado Integrado em Medicina Veterinária
Resumo:
Purpose: To develop processes for effective isolation and purification of recombinant human plasminogen activator (rhPA) from transgenic rabbit milk. Methods: Immunoaffinity chromatography was selected and improved by a special polyol-responsive monoclonal antibody (PR-mAb). Alteplase was used as immunogen because of its similarity to rhPA in terms of structure. The PR-mAb was prepared by hybridoma technology and screened by ELISA-elution assay. Screening antibody was performed using rhPA milk in an ELISA-elution assay. The antibody clone C4-PR-mAb was selected for immunoaffinity chromatography. The rhPA was effectively bound to immobilized C4-PR-mAb on the column and was eluted with Tris buffer comprising 0.75 mol/L ammonium sulfate and 40n% propanediol (pH7.9). The rhPA was further purified by passing through Chromdex75 gel filtration column. Results: There were 12 hybridoma strains selected into the polyol-responsive mAbs screen step and three hybridoma strains were superior for producing PR-mAbs (C1, C4, C8). The rhPA can be purified from transgenic rabbit milk and maintained a higher thrombolytic activity in vitro by FAPA. Conclusion: The results demonstrate the suitability of the alternative approach used in this study. Using immunoaffinity chromatography and gel filtration column is feasible and convenient for extracting rhPA from milk, and should be useful for purifying other tPA mutants or other novel recombinant milkderived proteins.
Resumo:
-D-glucosidase (EC 3.2.1.21) is one of the most interesting glycosidases, especially for hydrolysis cellobiose releasing glucose, is last step degradation of cellulose. This function makes the -D-glucosidase is of great interest as a versatile industrial biocatalyst, being critical to various bio-treatment / biorefinery processes, such as bioethanol production. Hen in the report, a -D-glucosidase was extracts from protein extracted of the invertebrate marine Artemia franciscana was purified and characterized with a combination of precipitation with ammonium sulfate (0 - 30%, 30 to 50%, 50 to 80%), the fraction saturated in the range of 30 to 50% (called F-II) was applied in a molecular exclusion chromatography, in Sephacryl S-200, the fractions corresponding to the first peak of activity of -D-glucosidase were gathered and applied in a chromatography of ion exchange in Mono Q; the third peak this protein obtained chromatography, which coincides with the peak of activity of -D-glucosidase was held and applied in a gel filtration chromatography Superose 12 where the first peak protein, which has activity of -D-glucosidase was rechromatography on Superose 12. This enzyme is probably multimerica, consisting of three subunit molecular mass of 52.7 kDa (determined by SDS-PAGE) with native molecular mass of 157 kDa (determined by gel filtration chromatography on Superose 12 under the system FPLC). The enzyme was purified 44.09 times with a recovery of 1.01%. Using up p-nitrophenyl-β-D-glucopiranoside as substrate obtained a Km apparent of 0.229 mM and a Vmax of 1.109 mM.60min-1.mL-1mM. The optimum pH and optimum temperature of catalysis of the synthetic substrate were 5.0 and 45 °C, respectively. The activity of the -D-glucosidase was strongly, inhibited by silver nitrate and N- etylmaleimide, this inhibition indicates the involvement of radical sulfidrila the hydrolysis of synthetic substrate. The -D-glucosidase of Artemia franciscana presented degradativa action on celobiose, lactose and on the synthetic substrate -nitrophenyl-β-D-glucopiranoside indicating potential use of this enzyme in the industry mainly for the production of bioethanol (production of alcohol from the participating cellulose), and production hydrolysate milk (devoid of milk lactose)
Resumo:
The search for new renewable materials has intensified in recent years. Pulp and paper mill process streams contain a number of potential compounds which could be used in biofuel production and as raw materials in the chemical, food and pharmaceutical industries. Prior to utilization, these compounds require separation from other compounds present in the process stream. One feasible separation technique is membrane filtration but to some extent, fouling still limits its implementation in pulp and paper mill applications. To mitigate fouling and its effects, foulants and their fouling mechanisms need to be well understood. This thesis evaluates fouling in filtration of pulp and paper mill process streams by means of polysaccharide model substance filtrations and by development of a procedure to analyze and identify potential foulants, i.e. wood extractives and carbohydrates, from fouled membranes. The model solution filtration results demonstrate that each polysaccharide has its own fouling mechanism, which also depends on the membrane characteristics. Polysaccharides may foul the membranes by adsorption and/or by gel/cake layer formation on the membrane surface. Moreover, the polysaccharides interact, which makes fouling evaluation of certain compound groups very challenging. Novel methods to identify wood extractive and polysaccharide foulants are developed in this thesis. The results show that it is possible to extract and identify wood extractives from membranes fouled in filtration of pulp and paper millstreams. The most effective solvent was found to be acetone:water (9:1 v/v) because it extracted both lipophilic extractives and lignans at high amounts from the fouled membranes and it was also non-destructive for the membrane materials. One hour of extraction was enough to extract wood extractives at high amounts for membrane samples with an area of 0.008 m2. If only qualitative knowledge of wood extractives is needed a simplified extraction procedure can be used. Adsorption was the main fouling mechanism in extractives-induced fouling and dissolved fatty and resin acids were mostly the reason for the fouling; colloidal fouling was negligible. Both process water and membrane characteristics affected extractives-induced fouling. In general, the more hydrophilic regenerated cellulose (RC) membrane fouled less that the more hydrophobic polyethersulfone (PES) and polyamide (PA) membranes independent of the process water used. Monosaccharide and uronic acid units could also be identified from the fouled synthetic polymeric membranes. It was impossible to analyze all monosaccharide units from the RC membrane because the analysis result obtained contained degraded membrane material. One of the fouling mechanisms of carbohydrates was adsorption. Carbohydrates were not potential adsorptive foulants to the sameextent as wood extractives because their amount in the fouled membranes was found to be significantly lower than the amount of wood extractives.
Resumo:
The thesis entitled "Sol-Gel Alumina Nano Composites for Functional Applications" investigate sol-gel methods of synthesis of alumina nanocomposites special reference to alumina-aluminium titanate and alumina-lanthanum phosphate composites. The functional properties such as thermal expansion coefficient and thermal shock resistance, machinability of composites as well as thermal protection are highlighted in addition to novel approach in synthesis of composites.A general introduction of alumina matrix composites materials, followed by brief coverage of alumina-aluminium titanate and alumina-lanthanum phosphate composites is highlight of the first chapter. The second chapter deals with the sol-gel synthesis of aluminium titanate and alumina-aluminium titanate composite. The synthesis of machinable substrate, based on alumina and lanthanum phosphate forms the basis of the third chapter. The fourth chapter describes the sol-gel coating of mullite on SiC substrate for the possible gas filtration application.
Resumo:
A hot filtration unit downstream of a 1kg/h fluidised bed fast pyrolysis reactor was designed and built. The filter unit operates at 450oC and consists of 1 exchangeable filter candle with reverse pulse cleaning system. Hot filtration experiments up to 7 hours were performed with beech wood as feedstock. It was possible to produce fast pyrolysis oils with a solid content below 0.01 wt%. The additional residence time of the pyrolysis vapours and secondary vapour cracking on the filter cake caused an increase of non-condensable gases at the expense of organic liquid yield. The oils produced with hot filtration showed superior quality properties regarding viscosity than standard pyrolysis oils. The oils were analysed by rotational viscosimetry and gel permeation chromatography before and after accelerated aging. During filtration the separated particulates accumulate on the candle surface and build up the filter cake. The filter cake leads to an increase in pressure drop between the raw gas and the clean gas side of the filter candle. At a certain pressure drop the filter cake has to be removed by reverse pulse cleaning to regenerate the pressure drop. The experiments showed that successful pressure drop recovery was possible during the initial filtration cycles, thereafter further cycles showed minor pressure drop recovery and therefore a steady increase in differential pressure. Filtration with pre-coating the candle to form an additional layer between the filter candle and cake resulted in total removal of the dust cake.
Resumo:
The demand for materials with high consistency obtained at relatively low temperatures has been leveraging the search for chemical processes substituents of the conventional ceramic method. This paper aims to obtain nanosized pigments encapsulated (core-shell) the basis of TiO2 doped with transition metals (Fe, Co, Ni, Al) through three (3) methods of synthesis: polymeric precursors (Pechini); hydrothermal microwave, and co-precipitation associated with the sol-gel chemistry. The study was motivated by the simplicity, speed and low power consumption characteristic of these methods. Systems costs are affordable because they allow achieving good control of microstructure, combined with high purity, controlled stoichiometric phases and allowing to obtain particles of nanometer size. The physical, chemical, morphological, structural and optical properties of the materials obtained were analyzed using different techniques for materials characterization. The powder pigments were tested in discoloration and degradation using a photoreactor through the solution of Remazol yellow dye gold (NNI), such as filtration, resulting in a separation of solution and the filter pigments available for further UV-Vis measurements . Different calcination temperatures taken after obtaining the post, the different methods were: 400 º C and 1000 º C. Using a fixed concentration of 10% (Fe, Al, Ni, Co) mass relative to the mass of titanium technologically and economically enabling the study. By transmission electron microscopy (TEM) technique was possible to analyze and confirm the structural formation nanosized particles of encapsulated pigment, TiO2 having the diameter of 20 nm to 100 nm, and thickness of coated layer of Fe, Ni and Co between 2 nm and 10 nm. The method of synthesis more efficient has been studied in the work co-precipitation associated with sol-gel chemistry, in which the best results were achieved without the need for the obtainment of powders the calcination process