991 resultados para Forest restoration
Resumo:
SummaryThis scoping study assesses the contribution that woody biomass could make to feedstock supply for an aviation biofuel industry in Queensland. The inland 600?900 mm rainfall zone, including the Fitzroy Basin region, is identified as an area that is particularly worthy of closer study as it has potential for supply of woody biomass from existing native regrowth (brigalow and other species) as well as from new plantings. New analyses carried out for this study of Corymbia citriodora subsp. variegata trials suggest biomass plantings could produce harvestable yield of aboveground dry mass of about 85 t ha?1 over a 10-year rotation at relatively low-rainfall (600?750 mm mean annual precipitation) sites and about 115 t ha?1 at medium-rainfall (750?900 mm) sites. Estimates of productivity for native regrowth suggest potential productivity should be around 40 t ha?1 during the initial decade after clearing when systems are managed for bioenergy rather than grazing. In this paper, potential production systems are described, and sustainability issues are briefly considered. It is concluded that more detailed studies focused particularly on biomass production would be worthwhile, and further research requirements are briefly discussed.
Resumo:
It is shown using an explicit model that radiative corrections can restore the symmetry of a system which may appear to be broken at the classical level. This is the reverse of the phenomenon demonstrated by Coleman and Weinberg. Our model is different from theirs, but the techniques are the same. The calculations are done up to the two-loop level and it is shown that the two-loop contribution is much smaller than the one-loop contribution, indicating good convergence of the loop expansion.
Resumo:
Native Mediterranean forests in Australia are dominated by two tree genera, Eucalyptus and Acacia, while Pinus and Eucalyptus dominate plantation forestry. In native forests, there is a high diversity of phloem and wood borers across several families in the Coleoptera and Lepidoptera. In the Coleoptera, cerambycid beetles (Cerambycidae), jewel beetles (Buprestidae), bark, ambrosia and pinhole beetles (Curculionidae) and pinworms (Lymexelidae) are some of the most commonly found beetles attacking eucalypts and acacias. In the Lepidoptera, wood moths (Cossidae), ghost moths (Hepialidae) and borers in the Xyloryctidae (subfamily Xyloryctinae) are most common. In contrast to native forests, there is a much more limited range of native insects present in Australian plantations, particularly in exotic Pinus spp. plantations, although eucalypt plantations do share some borers in common with native forests. This chapter reviews the importance of these borers in Australian forests primarily from an economic perspective (i.e. those species that cause damage to commercial tree species) and highlights a paucity of native forest species that commonly kill trees relative to the large scales regularly seen in North America and Europe.
Resumo:
Prescribed fire is one of the most widely-used management tools for reducing fuel loads in managed forests. However the long-term effects of repeated prescribed fires on soil carbon (C) and nitrogen (N) pools are poorly understood. This study aimed to investigate how different fire frequency regimes influence C and N pools in the surface soils (0–10 cm). A prescribed fire field experiment in a wet sclerophyll forest established in 1972 in southeast Queensland was used in this study. The fire frequency regimes included long unburnt (NB), burnt every 2 years (2yrB) and burnt every 4 years (4yrB), with four replications. Compared with the NB treatment, the 2yrB treatment lowered soil total C by 44%, total N by 54%, HCl hydrolysable C and N by 48% and 59%, KMnO4 oxidizable C by 81%, microbial biomass C and N by 42% and 33%, cumulative CO2–C by 28%, NaOCl-non-oxidizable C and N by 41% and 51%, and charcoal-C by 17%, respectively. The 4yrB and NB treatments showed no significant differences for these soil C and N pools. All soil labile, biologically active and recalcitrant and total C and N pools were correlated positively with each other and with soil moisture content, but negatively correlated with soil pH. The C:N ratios of different C and N pools were greater in the burned treatments than in the NB treatments. This study has highlighted that the prescribed burning at four year interval is a more sustainable management practice for this subtropical forest ecosystem.
Resumo:
Two different matrix algorithms are described for the restoration of blurred pictures. These are illustrated by numerical examples.
Resumo:
This Ph.D. thesis Participation or Further Exclusion? Contestations over Forest Conservation and Control in the East Usambara Mountains, Tanzania describes and analyses the shift in the prevailing discourse of forest and biodiversity conservation policies and strategies towards more participatory approaches in Tanzania, and the changes in the practises of resource control. I explore the scope for and limits to the different actors and groups who are considered to form the community, to participate in resource control, in a specific historical and socio-economic context. I analyse whether, how and to which extent the targets of such participatory conservation interventions have been able to affect the formal rules and practices of resource control, and explore their different responses and discursive and other strategies in relation to conservation efforts. I approach the problematic through exploring certain participatory conservation interventions and related negotiations between the local farmers, government officials and the external actors in the case of two protected forest reserves in the southern part of the East Usambaras, Tanzania. The study area belongs to the Eastern Arc Mountains that are valued globally and nationally for their high level of biodiversity and number of endemic and near endemic species. The theoretical approach draws from theorising on power, participation and conservation in anthropology of development and post-structuralist political ecology. The material was collected in three stages between 2003 and 2008 by using an ethnographic approach. I interviewed and observed the actors and their resource use and control practices at the local level, including the representatives of the villagers living close to the protected forests and the conservation agency, but also followed the selected processes and engaged with the non-local agencies involved in the conservation efforts in the East Usambaras. In addition, the more recent processes of change and the actors strategies in resource control were contextualised against the social and environmental history of the study area and the evolvement of institutions of natural resource control. My findings indicate that the discourse of participation that has emerged in global conservation policy debate within the past three decades, and is being institutionalised in the national policies in many countries, including Tanzania, has shaped the practices of forest conservation in the East Usambaras, although in a fragmented and uneven way. Instrumental interpretation of participation, in which it is to serve the goals of improving the control of the forest and making it more acceptable and efficient, has prevailed among the governmental actors and conservation organisations. Yet, there is variation between the different projects and actors promoting participatory conservation regarding the goals and means of participation, e.g. to which extent the local people are to be involved in decision-making. The actors representing communities also have their diverse agendas, understandings and experiences regarding the rationality, outcomes and benefits of being involved in forest control, making the practices of control fluid. The elements of the exclusive conservation thinking and practices co-exist with the more recent participatory processes, and continue to shape the understandings and strategies of the actors involved in resource control. The ideas and narratives of the different discourses are reproduced and selectively used by the parties involved. The idea of forest conservation is not resisted as such by most of the actors at local level, quite the opposite. However, the strict regulations and rules governing access to resources, such as valuable timber species, continue to be disputed by many. Furthermore, the history of control, such as past injustices related to conservation and unfulfilled promises, undermines the participation of certain social groups in resource control and benefit sharing. This also creates controversies in the practices of conservation, and fuels conflicts regarding the establishment of new protected areas. In spite of this, the fact that the representatives of the communities have been invited to the arenas where information is shared, and principles and conditions of forest control and benefit sharing are discussed and partly decided upon, has created expectations among the participants, and opened up opportunities for some of the local actors to enhance their own, and sometimes wider interests in relation to resource control and the related benefits. The local actors experiences of the previous government and other interventions strongly affect how they position themselves in relation to conservation interventions, and their responses and strategies. However, my findings also suggest, in a similar way to research conducted in some other protected areas, that the benefits of participation in conservation and resource control tend to accrue unevenly between different groups of local people, e.g. due to unequal access to information and differences in their initial resources and social position.
Resumo:
All positive-strand RNA viruses utilize cellular membranes for the assembly of their replication complexes, which results in extensive membrane modification in infected host cells. These alterations act as structural and functional scaffolds for RNA replication, providing protection for the viral double-stranded RNA against host defences. It is known that different positive-strand RNA viruses alter different cellular membranes. However, the origin of the targeted membranes, the mechanisms that direct replication proteins to specific membranes and the steps in the formation of the membrane bound replication complex are not completely understood. Alphaviruses (including Semliki Forest virus, SFV), members of family Togaviridae, replicate their RNA in association with membranes derived from the endosomal and lysosomal compartment, inducing membrane invaginations called spherules. Spherule structures have been shown to be the specific sites for RNA synthesis. Four replication proteins, nsP1-nsP4, are translated as a polyprotein (P1234) which is processed autocatalytically and gives rise to a membrane-bound replication complex. Membrane binding is mediated via nsP1 which possesses an amphipathic α-helix (binding peptide) in the central region of the protein. The aim of this thesis was to characterize the association of the SFV replication complex with cellular membranes and the modification of the membranes during virus infection. Therefore, it was necessary to set up the system for determining which viral components are needed for inducing the spherules. In addition, the targeting of the replication complex, the formation site of the spherules and their intracellular trafficking were studied in detail. The results of current work demonstrate that mutations in the binding peptide region of nsP1 are lethal for virus replication and change the localization of the polyprotein precursor P123. The replication complex is first targeted to the plasma membrane where membrane invaginations, spherules, are induced. Using a specific regulated endocytosis event the spherules are internalized from the plasma membrane in neutral carrier vesicles and transported via an actin-and microtubule-dependent manner to the pericentriolar area. Homotypic fusions and fusions with pre-existing acidic organelles lead to the maturation of previously described cytopathic vacuoles with hundreds of spherules on their limiting membranes. This work provides new insights into the membrane binding mechanism of SFV replication complex and its role in the virus life cycle. Development of plasmid-driven system for studying the formation of the replication complex described in this thesis allows various applications to address different steps in SFV life cycle and virus-host interactions in the future. This trans-replication system could be applied for many different viruses. In addition, the current work brings up new aspects of membranes and cellular components involved in SFV replication leading to further understanding in the formation and dynamics of the membrane-associated replication complex.
Resumo:
A long term study on the phenology of tree species of tropical dry deciduous forest ecosystem of Bandipur, South India has revealed patterns of strong seasonality with respect to leaf and fruit initiation as well as their abscission. The distribution of the duration of the various phenological events was observed to be skewed and there was little interannual variation in events such as flowering and fruiting. This suggests that there are, perhaps, no mast flowering or fruiting species present in the deciduous forests. The phenological changes appear to influence the food, feeding, movement patterns and sociality of the major mammals of this dry deciduous ecosystem.
Resumo:
In northern latitudes, temperature is the key factor driving the temporal scales of biological activity, namely the length of the growing season and the seasonal efficiency of photosynthesis. The formation of atmospheric concentrations of biogenic volatile organic compounds (BVOCs) are linked to the intensity of biological activity. However, interdisciplinary knowledge of the role of temperature in the biological processes related to the annual cycle and photosynthesis and atmospheric chemistry is not fully understood. The aim of this study was to improve understanding of the role of temperature in these three interlinked areas: 1) onset of growing season, 2) photosynthetic efficiency and 3) BVOC air concentrations in a boreal forest. The results present a cross-section of the role of temperature on different spatial (southern northern boreal), structural (tree forest stand - forest) and temporal (day-season- year) scales. The fundamental status of the Thermal Time model in predicting the onset of spring recovery was confirmed. However, it was recommended that sequential models would be more appropriate tools when the onset of the growing season is estimated under a warmer climate. A similar type of relationship between photosynthetic efficiency and temperature history was found in both southern and northern boreal forest stands. This result draws attention to the critical question of the seasonal efficiency of coniferous species to emit organic compounds under a warmer climate. New knowledge about the temperature dependence of the concentrations of biogenic volatile organic compounds in a boreal forest stand was obtained. The seasonal progress and the inter-correlation of BVOC concentrations in ambient air indicated a link to biological activity. Temperature was found to be the main driving factor for the concentrations. However, in addition to temperature, other factors may play a significant role here, especially when the peak concentrations are studied. There is strong evidence that the spring recovery and phenological events of many plant species have already advanced in Europe. This study does not fully support this observation. In a boreal forest, changes in the annual cycle, especially the temperature requirement in winter, would have an impact on the atmospheric BVOC composition. According to this study, more joint phenological and BVOC field observations and laboratory experiments are still needed to improve these scenarios.
Resumo:
Despite much research on forest biodiversity in Fennoscandia, the exact mechanisms of species declines in dead-wood dependent fungi are still poorly understood. In particular, there is only limited information on why certain fungal species have responded negatively to habitat loss and fragmentation, while others have not. Understanding the mechanisms behind species declines would be essential for the design and development of ecologically effective and scientifically informed conservation measures, and management practices that would promote biodiversity in production forests. In this thesis I study the ecology of polypores and their responses to forest management, with a particular focus on why some species have declined more than others. The data considered in the thesis comprise altogether 98,318 dead-wood objects, with 43,085 observations of 174 fungal species. Out of these, 1,964 observations represent 58 red-listed species. The data were collected from 496 sites, including woodland key habitats, clear-cuts with retention trees, mature managed forests, and natural or natural-like forests in southern Finland and Russian Karelia. I show that the most relevant way of measuring resource availability can differ to a great extent between species seemingly sharing the same resources. It is thus critical to measure the availability of resources in a way that takes into account the ecological requirements of the species. The results show that connectivity at the local, landscape and regional scales is important especially for the highly specialized species, many of which are also red-listed. Habitat loss and fragmentation affect not only species diversity but also the relative abundances of the species and, consequently, species interactions and fungal successional pathways. Changes in species distributions and abundances are likely to affect the food chains in which wood-inhabiting fungi are involved, and thus the functioning of the whole forest ecosystem. The findings of my thesis highlight the importance of protecting well-connected, large and high-quality forest areas to maintain forest biodiversity. Small habitat patches distributed across the landscape are likely to contribute only marginally to protection of red-listed species, especially if habitat quality is not substantially higher than in ordinary managed forest, as is the case with woodland key habitats. Key habitats might supplement the forest protection network if they were delineated larger and if harvesting of individual trees was prohibited in them. Taking the landscape perspective into account in the design and development of conservation measures is critical while striving to halt the decline of forest biodiversity in an ecologically effective manner.
Resumo:
Archaea were long thought to be a group of ancient bacteria, which mainly lived in extreme environments. Due to the development of DNA sequencing methods and molecular phylogenetic analyses, it was shown that the living organisms are in fact divided into three domains; the Archaea, Bacteria and the Eucarya. Since the beginning of the previous decade, it was shown that archaea generally inhabit moderate environments and that these non-extremophilic archaea are more ubiquitous than the extremophiles. Group 1 of non-extreme archaea affiliate with the phylum Crenarchaeota. The most commonly found soil archaea belong to the subgroup 1.1b. However, the Crenarchaeota found in the Fennoscandian boreal forest soil belong to the subgroup 1.1c. The organic top layer of the boreal forest soil, the humus, is dominated by ectomycorrhizal fungal hyphae. These colonise virtually all tree fine root tips in the humus layer and have been shown to harbour distinct bacterial populations different from those in the humus. The archaea have also been shown to colonise both boreal forest humus and the rhizospheres of plants. In this work, studies on the archaeal communities in the ectomycorrhizospheres of boreal forest trees were conducted in microcosms. Archaea belonging to the group 1.1c Crenarchaeota and Euryarchaeota of the genera Halobacterium and Methanolobus were detected. The archaea generally colonised fungal habitats, such as ectomycorrhizas and external mycelia, rather than the non-mycorrhizal fine roots of trees. The species of ectomycorrhizal fungus had a great impact on the archaeal community composition. A stable euryarchaeotal community was detected especially in the mycorrhizas, of most of the tested Scots pine colonising ectomycorrhizal fungi. The Crenarchaeota appeared more sporadically in these habitats, but had a greater diversity than the Euryarchaeota. P. involutus mycorrhizas had a higher diversity of 1.1c Crenarchaeota than the other ectomycorrhizal fungi. The detection level of archaea in the roots of boreal trees was generally low although archaea have been shown to associate with roots of different plants. However, alder showed a high diversity of 1.1c Crenarchaeota, exceeding that of any of the tested mycorrhizas. The archaeal 16S rRNA genes detected from the non-mycorrhizal roots were different from those of the P. involutus mycorrhizas. In the phylogenetic analyses, the archaeal 16S rRNA gene sequences obtained from non-mycorrhizal fine roots fell in a separate cluster within the group 1.1c Crenarchaeota than those from the mycorrhizas. When the roots of the differrent tree species were colonised by P. involutus, the diversity and frequency of the archaeal populations of the different tree species were more similar to each other. Both Cren- and Euryarchaeota were enriched in cultures to which C-1 substrates were added. The 1.1c Crenarchaeota grew anaerobically in mineral medium with CH4 and CO2 as the only available C sources, and in yeast extract media with CO2 and CH4 or H2. The crenarchaeotal diversity was higher in aerobic cultures on mineral medium with CH4 or CH3OH than in the anaerobic cultures. Ecological functions of the mycorrhizal 1.1c Crenarchaeota in both anaerobic and aerobic cycling of C-1 compounds were indicated. The phylogenetic analyses did not divide the detected Crenarchaeota into anaerobic and aerobic groups. This may suggest that the mycorrhizospheric crenarchaeotal communities consist of closely related groups of anaerobic and aerobic 1.1c Crenarchaeota, or the 1.1c Crenarchaeota may be facultatively anaerobic. Halobacteria were enriched in non-saline anaerobic yeast extract medium cultures in which CH4 was either added or produced, but were not detected in the aerobic cultures. They may potentially be involved in anaerobic CH4 cycling in ectomycorrhizas. The CH4 production of the mycorrhizal samples was over 10 times higher than for humus devoid of mycorrhizal hyphae, indicating a high CH4 production potential of the mycorrhizal metanogenic community. Autofluorescent methanogenic archaea were detected by microscopy and 16S rRNA gene sequences of the genus Methanolobus were obtained. The archaeal community depended on both tree species and the type of ectomycorrhizal fungus colonising the roots and the Cren- and Euryarchaeota may have different ecological functions in the different parts of the boreal forest tree rhizosphere and mycorrhizosphere. By employing the results of this study, it may be possible to isolate both 1.1c Crenarchaeota as well as non-halophilic halobacteria and aerotolerant methanogens from mycorrhizospheres. These archaea may be used as indicators for change in the boreal forest soil ecosystem due to different factors, such as exploitations of forests and the rise in global temperature. More information about the microbial populations with apparently low cell numbers but significant ecological impacts, such as the boreal forest soil methanogens, may be of crucial importance to counteract human impacts on such globally important ecosystems as the boreal forests.
Resumo:
This dissertation explored the ecological dimension of ecologically sustainable forest management in boreal forests, and factors of the socio-cultural dimension that affect how the concept of ecologically sustainable forest management is defined. My approach was problem-oriented and generalistic-holistic. I examined associations between the abundances of wildlife groups (grouse, large predators, small predators, ungulates) and Siberian flying squirrels, and their co-occurrence with tree structural characteristics at the regional level. The trade-offs between ecological, social and economic sustainability in forestry were explored at the regional scale. I identified a potential 'shopping basket' of regional indicators for ecologically sustainable forest management, combining the relative abundance of Siberian flying squirrels, a wildlife richness index (WRI) for grouse, diversity indices of saw-timber trees, tree age classes and the proportion of old-growth (> 120 yr) forests. I suggest that the close association between forestry activity, the proportion of young forests (< 40 yr) and a WRI for small predators can be considered as potential 'alarm bells' for regions in which the creation of trade-offs (negative relationships) between economic and ecological components of sustainable forestry is ongoing. Explorative analyses revealed negative relationships between forestry activity and a WRI of 16 game species, the WRI for grouse and tree age diversity. Socially sustainable communities compete less intensively with ecological components of forests than communities where forestry is important. Interestingly, forest ownership types (farmers, other private forest owners, the forestry industry, the State) correlated significantly with the co-occurrence of flying squirrels, grouse and diverse forest structural characteristics rather than, for instance, with the total number of protection areas, suggesting that private forest ownership can lead to increased ecological sustainability. I examined forest actors’ argumentation to identify characteristics that affect the interpretation of ecologically sustainable forest management. Four argumentation frame types were constructed: information, work, experience and own position based. These differed in terms of their emphasis on external experts or own experiences. The closer ecologically sustainable forest management is to the forest actor’s daily life, the more profiled policy tools (counselling, learning through experiences) are needed to guide management behaviour to become more ecologically sound. I illustrated that forest actors interpret, use and understand information through meaningful framing. I analysed the extent to which ecological research information has been perceived in the Forestry Development Centre TAPIO’s recommendations and revised PEFC Finland criteria. We noticed that the political value for decaying wood was much lower in PEFC Finland critera (4 m3) than could be expected as a socially acceptable level (9 m3) or ecologically sound (10-20 m3). I consider it important for scientists to join political discourses and become involved in policy making concerning sustainable forest management to learn to present their results in a way that is reasonable from the user’s perspective.
Resumo:
The area of intensively managed forests, in which required conditions for several liverwort species are seldom found, has expanded over the forest landscape during the last century. Liverworts are very sensitive to habitat changes, because they demand continuously moist microclimate. Consequently, about third of the forest liverworts have been classified as threatened or near threatened in Finland. The general objective of this thesis is to increase knowledge of the reproductive and dispersal strategies of the substrate-specific forest bryophytes. A further aim was to develop recommendations for conservation measures for species inhabiting unstable and stable habitats in forest landscape. Both population ecological and genetic methods have been applied in the research. Anastrophyllum hellerianum inhabits spatially and temporally limited substrate patches, decaying logs, which can be considered as unstable habitats. The results show that asexual reproduction by gemmae is the dominant mode of reproduction, whereas sexual reproduction is considerably infrequent. Unlike previously assumed, not only spores but also the asexual propagules may contribute to long-distance dispersal. The combination of occasional spore production and practically continuous, massive gemma production facilitates dispersal both on a local scale and over long distances, and it compensates for the great propagule losses that take place preceding successful establishment at suitable sites. However, establishment probability of spores may be restricted because of environmental and biological limitations linked to the low success of sexual reproduction. Long-lasting dry seasons are likely to result in a low success of sexual reproduction and decreased release rate of gemmae from the shoots, and consequent fluctuations in population sizes. In the long term, the substratum limitation is likely to restrict population sizes and cause local extinctions, especially in small-sized remnant populations. Contrastingly, larger forest fragments with more natural disturbance dynamics, to which the species is adapted, are pivotal to species survival. Trichocolea tomentella occupies stable spring and mesic habitats in woodland. The relatively small populations are increasingly fragmented with a high risk for extinction for extrinsic reasons. The results show that T. tomentella mainly invests in population persistence by effective clonal growth via forming independent ramets and in competitive ability, and considerably less in sexuality and dispersal potential. The populations possess relatively high levels of genetic diversity regardless of population size and of degree of isolation. Thus, the small-sized populations inhabiting stable habitats should not be neglected when establishing conservation strategies for the species and when considering the habitat protection of small spring sites. Restricted dispersal capacity, also on a relatively small spatial scale, is likely to prevent successful (re-)colonization in the potential habitat patches of recovering forest landscapes. By contrast, random short-range dispersal of detached vegetative fragments within populations at suitable habitat seems to be frequent. Thus, the restoration actions of spring and streamside habitats close to the populations of T. tomentella may contribute to population expansion. That, in turn, decreases the harmful effects of environmental stochasticity.
Resumo:
Aims of this thesis This study is part of a larger hare project in Finland, which provides answers to basic ecological questions regarding the mountain hare. This study of the ecology of the mountain hare focuses in particular on different levels of managed boreal forest. The feeding habits and intensity of mountain hares in winter are explored, and the connections between mountain hares versus the forest structure are also studied (e.g. habitat use and the importance of different forest layers for hares). The use of the environment by hares at the landscape level was examined (forest patch structures), and the home ranges of mountain hares were studied. Finally, the productivity and survival rate of mountain hare populations were also studied (discussion e.g. predator effects on hare populations). Conclusions Feeding intensity seemed to be highest in the spring-winter, when home ranges were also largest. Favourable food species are covered by snow in winter and the mobility of hares is highest during late winter. A shortage of suitable food species may be problematic for hares, especially during the winter period. In this study mountain hares preferred a dense shrub layer at local level and deciduous and mixed tree forest over coniferous forest at the landscape level. Food and shelter are vital for hares and the preference for particular habitats may also affect the population dynamics of the mountain hare. It would be possible to improve the quality of food and shelter or at least prevent the most negative habitat changes through forest management. At a local level it is also possible to add supplementary food for hares through the winter period. The intensive clearing of young sapling stands and especially the removal of deciduous shrubs and trees reduces the quality of habitats for the mountain hare. Mountain hares primarily live in forest habitat and it is possible that changes in the forest structure play a crucial role in mountain hare habitat preference. Ecological knowledge of the mountain hare is vital to create habitat structure more suitable for the species. More deciduous trees should be saved in managing forests and the mechanical clearing of the shrub layer should be done carefully.