921 resultados para Error analysis (Mathematics)
Resumo:
The IEEE 754 standard for oating-point arithmetic is widely used in computing. It is based on real arithmetic and is made total by adding both a positive and a negative infinity, a negative zero, and many Not-a-Number (NaN) states. The IEEE infinities are said to have the behaviour of limits. Transreal arithmetic is total. It also has a positive and a negative infinity but no negative zero, and it has a single, unordered number, nullity. We elucidate the transreal tangent and extend real limits to transreal limits. Arguing from this firm foundation, we maintain that there are three category errors in the IEEE 754 standard. Firstly the claim that IEEE infinities are limits of real arithmetic confuses limiting processes with arithmetic. Secondly a defence of IEEE negative zero confuses the limit of a function with the value of a function. Thirdly the definition of IEEE NaNs confuses undefined with unordered. Furthermore we prove that the tangent function, with the infinities given by geometrical con- struction, has a period of an entire rotation, not half a rotation as is commonly understood. This illustrates a category error, confusing the limit with the value of a function, in an important area of applied mathe- matics { trigonometry. We brie y consider the wider implications of this category error. Another paper proposes transreal arithmetic as a basis for floating- point arithmetic; here we take the profound step of proposing transreal arithmetic as a replacement for real arithmetic to remove the possibility of certain category errors in mathematics. Thus we propose both theo- retical and practical advantages of transmathematics. In particular we argue that implementing transreal analysis in trans- floating-point arith- metic would extend the coverage, accuracy and reliability of almost all computer programs that exploit real analysis { essentially all programs in science and engineering and many in finance, medicine and other socially beneficial applications.
Resumo:
In this work we construct reliable a posteriori estimates for some semi- (spatially) discrete discontinuous Galerkin schemes applied to nonlinear systems of hyperbolic conservation laws. We make use of appropriate reconstructions of the discrete solution together with the relative entropy stability framework, which leads to error control in the case of smooth solutions. The methodology we use is quite general and allows for a posteriori control of discontinuous Galerkin schemes with standard flux choices which appear in the approximation of conservation laws. In addition to the analysis, we conduct some numerical benchmarking to test the robustness of the resultant estimator.
Resumo:
To improve the quantity and impact of observations used in data assimilation it is necessary to take into account the full, potentially correlated, observation error statistics. A number of methods for estimating correlated observation errors exist, but a popular method is a diagnostic that makes use of statistical averages of observation-minus-background and observation-minus-analysis residuals. The accuracy of the results it yields is unknown as the diagnostic is sensitive to the difference between the exact background and exact observation error covariances and those that are chosen for use within the assimilation. It has often been stated in the literature that the results using this diagnostic are only valid when the background and observation error correlation length scales are well separated. Here we develop new theory relating to the diagnostic. For observations on a 1D periodic domain we are able to the show the effect of changes in the assumed error statistics used in the assimilation on the estimated observation error covariance matrix. We also provide bounds for the estimated observation error variance and eigenvalues of the estimated observation error correlation matrix. We demonstrate that it is still possible to obtain useful results from the diagnostic when the background and observation error length scales are similar. In general, our results suggest that when correlated observation errors are treated as uncorrelated in the assimilation, the diagnostic will underestimate the correlation length scale. We support our theoretical results with simple illustrative examples. These results have potential use for interpreting the derived covariances estimated using an operational system.
Resumo:
In recent years an increasing number of papers have employed meta-analysis to integrate effect sizes of researchers’ own series of studies within a single paper (“internal meta-analysis”). Although this approach has the obvious advantage of obtaining narrower confidence intervals, we show that it could inadvertently inflate false-positive rates if researchers are motivated to use internal meta-analysis in order to obtain a significant overall effect. Specifically, if one decides whether to stop or continue a further replication experiment depending on the significance of the results in an internal meta-analysis, false-positive rates would increase beyond the nominal level. We conducted a set of Monte-Carlo simulations to demonstrate our argument, and provided a literature review to gauge awareness and prevalence of this issue. Furthermore, we made several recommendations when using internal meta-analysis to make a judgment on statistical significance.
Resumo:
The multivariate skew-t distribution (J Multivar Anal 79:93-113, 2001; J R Stat Soc, Ser B 65:367-389, 2003; Statistics 37:359-363, 2003) includes the Student t, skew-Cauchy and Cauchy distributions as special cases and the normal and skew-normal ones as limiting cases. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis of repeated measures, pretest/post-test data, under multivariate null intercept measurement error model (J Biopharm Stat 13(4):763-771, 2003) where the random errors and the unobserved value of the covariate (latent variable) follows a Student t and skew-t distribution, respectively. The results and methods are numerically illustrated with an example in the field of dentistry.
Resumo:
Skew-normal distribution is a class of distributions that includes the normal distributions as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in a multivariate, null intercept, measurement error model [R. Aoki, H. Bolfarine, J.A. Achcar, and D. Leao Pinto Jr, Bayesian analysis of a multivariate null intercept error-in -variables regression model, J. Biopharm. Stat. 13(4) (2003b), pp. 763-771] where the unobserved value of the covariate (latent variable) follows a skew-normal distribution. The results and methods are applied to a real dental clinical trial presented in [A. Hadgu and G. Koch, Application of generalized estimating equations to a dental randomized clinical trial, J. Biopharm. Stat. 9 (1999), pp. 161-178].
Resumo:
In this paper we introduce a type of Hypercomplex Fourier Series based on Quaternions, and discuss on a Hypercomplex version of the Square of the Error Theorem. Since their discovery by Hamilton (Sinegre [1]), quaternions have provided beautifully insights either on the structure of different areas of Mathematics or in the connections of Mathematics with other fields. For instance: I) Pauli spin matrices used in Physics can be easily explained through quaternions analysis (Lan [2]); II) Fundamental theorem of Algebra (Eilenberg [3]), which asserts that the polynomial analysis in quaternions maps into itself the four dimensional sphere of all real quaternions, with the point infinity added, and the degree of this map is n. Motivated on earlier works by two of us on Power Series (Pendeza et al. [4]), and in a recent paper on Liouville’s Theorem (Borges and Mar˜o [5]), we obtain an Hypercomplex version of the Fourier Series, which hopefully can be used for the treatment of hypergeometric partial differential equations such as the dumped harmonic oscillation.
Resumo:
The uncertainties in the determination of the stratigraphic profile of natural soils is one of the main problems in geotechnics, in particular for landslide characterization and modeling. The study deals with a new approach in geotechnical modeling which relays on a stochastic generation of different soil layers distributions, following a boolean logic – the method has been thus called BoSG (Boolean Stochastic Generation). In this way, it is possible to randomize the presence of a specific material interdigitated in a uniform matrix. In the building of a geotechnical model it is generally common to discard some stratigraphic data in order to simplify the model itself, assuming that the significance of the results of the modeling procedure would not be affected. With the proposed technique it is possible to quantify the error associated with this simplification. Moreover, it could be used to determine the most significant zones where eventual further investigations and surveys would be more effective to build the geotechnical model of the slope. The commercial software FLAC was used for the 2D and 3D geotechnical model. The distribution of the materials was randomized through a specifically coded MatLab program that automatically generates text files, each of them representing a specific soil configuration. Besides, a routine was designed to automate the computation of FLAC with the different data files in order to maximize the sample number. The methodology is applied with reference to a simplified slope in 2D, a simplified slope in 3D and an actual landslide, namely the Mortisa mudslide (Cortina d’Ampezzo, BL, Italy). However, it could be extended to numerous different cases, especially for hydrogeological analysis and landslide stability assessment, in different geological and geomorphological contexts.
Resumo:
I Polar Codes sono la prima classe di codici a correzione d’errore di cui è stato dimostrato il raggiungimento della capacità per ogni canale simmetrico, discreto e senza memoria, grazie ad un nuovo metodo introdotto recentemente, chiamato ”Channel Polarization”. In questa tesi verranno descritti in dettaglio i principali algoritmi di codifica e decodifica. In particolare verranno confrontate le prestazioni dei simulatori sviluppati per il ”Successive Cancellation Decoder” e per il ”Successive Cancellation List Decoder” rispetto ai risultati riportati in letteratura. Al fine di migliorare la distanza minima e di conseguenza le prestazioni, utilizzeremo uno schema concatenato con il polar code come codice interno ed un CRC come codice esterno. Proporremo inoltre una nuova tecnica per analizzare la channel polarization nel caso di trasmissione su canale AWGN che risulta il modello statistico più appropriato per le comunicazioni satellitari e nelle applicazioni deep space. In aggiunta, investigheremo l’importanza di una accurata approssimazione delle funzioni di polarizzazione.
Resumo:
If change over time is compared in several groups, it is important to take into account baseline values so that the comparison is carried out under the same preconditions. As the observed baseline measurements are distorted by measurement error, it may not be sufficient to include them as covariate. By fitting a longitudinal mixed-effects model to all data including the baseline observations and subsequently calculating the expected change conditional on the underlying baseline value, a solution to this problem has been provided recently so that groups with the same baseline characteristics can be compared. In this article, we present an extended approach where a broader set of models can be used. Specifically, it is possible to include any desired set of interactions between the time variable and the other covariates, and also, time-dependent covariates can be included. Additionally, we extend the method to adjust for baseline measurement error of other time-varying covariates. We apply the methodology to data from the Swiss HIV Cohort Study to address the question if a joint infection with HIV-1 and hepatitis C virus leads to a slower increase of CD4 lymphocyte counts over time after the start of antiretroviral therapy.
Resumo:
This paper introduces an extended hierarchical task analysis (HTA) methodology devised to evaluate and compare user interfaces on volumetric infusion pumps. The pumps were studied along the dimensions of overall usability and propensity for generating human error. With HTA as our framework, we analyzed six pumps on a variety of common tasks using Norman’s Action theory. The introduced method of evaluation divides the problem space between the external world of the device interface and the user’s internal cognitive world, allowing for predictions of potential user errors at the human-device level. In this paper, one detailed analysis is provided as an example, comparing two different pumps on two separate tasks. The results demonstrate the inherent variation, often the cause of usage errors, found with infusion pumps being used in hospitals today. The reported methodology is a useful tool for evaluating human performance and predicting potential user errors with infusion pumps and other simple medical devices.
Resumo:
Growth codes are a subclass of Rateless codes that have found interesting applications in data dissemination problems. Compared to other Rateless and conventional channel codes, Growth codes show improved intermediate performance which is particularly useful in applications where partial data presents some utility. In this paper, we investigate the asymptotic performance of Growth codes using the Wormald method, which was proposed for studying the Peeling Decoder of LDPC and LDGM codes. Compared to previous works, the Wormald differential equations are set on nodes' perspective which enables a numerical solution to the computation of the expected asymptotic decoding performance of Growth codes. Our framework is appropriate for any class of Rateless codes that does not include a precoding step. We further study the performance of Growth codes with moderate and large size codeblocks through simulations and we use the generalized logistic function to model the decoding probability. We then exploit the decoding probability model in an illustrative application of Growth codes to error resilient video transmission. The video transmission problem is cast as a joint source and channel rate allocation problem that is shown to be convex with respect to the channel rate. This illustrative application permits to highlight the main advantage of Growth codes, namely improved performance in the intermediate loss region.