912 resultados para Error Correction Models
Resumo:
The presence of high phase noise in addition to additive white Gaussian noise in coherent optical systems affects the performance of forward error correction (FEC) schemes. In this paper, we propose a simple scheme for such systems, using block interleavers and binary Bose–Chaudhuri–Hocquenghem (BCH) codes. The block interleavers are specifically optimized for differential quadrature phase shift keying modulation. We propose a method for selecting BCH codes that, together with the interleavers, achieve a target post-FEC bit error rate (BER). This combination of interleavers and BCH codes has very low implementation complexity. In addition, our approach is straightforward, requiring only short pre-FEC simulations to parameterize a model, based on which we select codes analytically. We aim to correct a pre-FEC BER of around (Formula presented.). We evaluate the accuracy of our approach using numerical simulations. For a target post-FEC BER of (Formula presented.), codes selected using our method result in BERs around 3(Formula presented.) target and achieve the target with around 0.2 dB extra signal-to-noise ratio.
Resumo:
This paper will look at the benefits and limitations of content distribution using Forward Error Correction (FEC) in conjunction with the Transmission Control Protocol (TCP). FEC can be used to reduce the number of retransmissions which would usually result from a lost packet. The requirement for TCP to deal with any losses is then greatly reduced. There are however side-effects to using FEC as a countermeasure to packet loss: an additional requirement for bandwidth. When applications such as real-time video conferencing are needed, delay must be kept to a minimum, and retransmissions are certainly not desirable. A balance, therefore, between additional bandwidth and delay due to retransmissions must be struck. Our results show that the throughput of data can be significantly improved when packet loss occurs using a combination of FEC and TCP, compared to relying solely on TCP for retransmissions. Furthermore, a case study applies the result to demonstrate the achievable improvements in the quality of streaming video perceived by end users.
Resumo:
In this work, we present an adaptive unequal loss protection (ULP) scheme for H264/AVC video transmission over lossy networks. This scheme combines erasure coding, H.264/AVC error resilience techniques and importance measures in video coding. The unequal importance of the video packets is identified in the group of pictures (GOP) and the H.264/AVC data partitioning levels. The presented method can adaptively assign unequal amount of forward error correction (FEC) parity across the video packets according to the network conditions, such as the available network bandwidth, packet loss rate and average packet burst loss length. A near optimal algorithm is developed to deal with the FEC assignment for optimization. The simulation results show that our scheme can effectively utilize network resources such as bandwidth, while improving the quality of the video transmission. In addition, the proposed ULP strategy ensures graceful degradation of the received video quality as the packet loss rate increases. © 2010 IEEE.
Resumo:
We quantify the error statistics and patterning effects in a 5x 40 Gbit/s WDM RZ-DBPSK SMF/DCF fibre link using hybrid Raman/EDFA amplification. We propose an adaptive constrained coding for the suppression of errors due to patterning effects. It is established, that this coding technique can greatly reduce the bit error rate (BER) value even for large BER (BER > 101). The proposed approach can be used in the combination with the forward error correction schemes (FEC) to correct the errors even when real channel BER is outside the FEC workspace.
Resumo:
Brain-computer interfaces (BCI) have the potential to restore communication or control abilities in individuals with severe neuromuscular limitations, such as those with amyotrophic lateral sclerosis (ALS). The role of a BCI is to extract and decode relevant information that conveys a user's intent directly from brain electro-physiological signals and translate this information into executable commands to control external devices. However, the BCI decision-making process is error-prone due to noisy electro-physiological data, representing the classic problem of efficiently transmitting and receiving information via a noisy communication channel.
This research focuses on P300-based BCIs which rely predominantly on event-related potentials (ERP) that are elicited as a function of a user's uncertainty regarding stimulus events, in either an acoustic or a visual oddball recognition task. The P300-based BCI system enables users to communicate messages from a set of choices by selecting a target character or icon that conveys a desired intent or action. P300-based BCIs have been widely researched as a communication alternative, especially in individuals with ALS who represent a target BCI user population. For the P300-based BCI, repeated data measurements are required to enhance the low signal-to-noise ratio of the elicited ERPs embedded in electroencephalography (EEG) data, in order to improve the accuracy of the target character estimation process. As a result, BCIs have relatively slower speeds when compared to other commercial assistive communication devices, and this limits BCI adoption by their target user population. The goal of this research is to develop algorithms that take into account the physical limitations of the target BCI population to improve the efficiency of ERP-based spellers for real-world communication.
In this work, it is hypothesised that building adaptive capabilities into the BCI framework can potentially give the BCI system the flexibility to improve performance by adjusting system parameters in response to changing user inputs. The research in this work addresses three potential areas for improvement within the P300 speller framework: information optimisation, target character estimation and error correction. The visual interface and its operation control the method by which the ERPs are elicited through the presentation of stimulus events. The parameters of the stimulus presentation paradigm can be modified to modulate and enhance the elicited ERPs. A new stimulus presentation paradigm is developed in order to maximise the information content that is presented to the user by tuning stimulus paradigm parameters to positively affect performance. Internally, the BCI system determines the amount of data to collect and the method by which these data are processed to estimate the user's target character. Algorithms that exploit language information are developed to enhance the target character estimation process and to correct erroneous BCI selections. In addition, a new model-based method to predict BCI performance is developed, an approach which is independent of stimulus presentation paradigm and accounts for dynamic data collection. The studies presented in this work provide evidence that the proposed methods for incorporating adaptive strategies in the three areas have the potential to significantly improve BCI communication rates, and the proposed method for predicting BCI performance provides a reliable means to pre-assess BCI performance without extensive online testing.
Resumo:
Atomic ions trapped in micro-fabricated surface traps can be utilized as a physical platform with which to build a quantum computer. They possess many of the desirable qualities of such a device, including high fidelity state preparation and readout, universal logic gates, long coherence times, and can be readily entangled with each other through photonic interconnects. The use of optical cavities integrated with trapped ion qubits as a photonic interface presents the possibility for order of magnitude improvements in performance in several key areas of their use in quantum computation. The first part of this thesis describes the design and fabrication of a novel surface trap for integration with an optical cavity. The trap is custom made on a highly reflective mirror surface and includes the capability of moving the ion trap location along all three trap axes with nanometer scale precision. The second part of this thesis demonstrates the suitability of small micro-cavities formed from laser ablated fused silica substrates with radii of curvature in the 300-500 micron range for use with the mirror trap as part of an integrated ion trap cavity system. Quantum computing applications for such a system include dramatic improvements in the photonic entanglement rate up to 10 kHz, the qubit measurement time down to 1 microsecond, and the measurement error rates down to the 10e-5 range. The final part of this thesis details a performance simulator for exploring the physical resource requirements and performance demands to scale such a quantum computer to sizes capable of performing quantum algorithms beyond the limits of classical computation.
Resumo:
The study examines the short-run and long-run causality running from real economic growth to real foreign direct investment inflows (RFDI). Other variables such as education (involving combination of primary, secondary and tertiary enrolment as a proxy to education), real development finance, unskilled labour, to real RFDI inflows are included in the study. The time series data covering the period of 1983 -2013 are examined. First, I applied Augmented Dicky-Fuller (ADF) technique to test for unit root in variables. Findings shows all variables integrated of order one [I(1)]. Thereafter, Johansen Co-integration Test (JCT) was conducted to establish the relationship among variables. Both trace and maximum Eigen value at 5% level of significance indicate 3 co-integrated equations. Vector error correction method (VECM) was applied to capture short and long-run causality running from education, economic growth, real development finance, and unskilled labour to real foreign direct investment inflows in the Republic of Rwanda. Findings shows no short-run causality running from education, real development finance, real GDP and unskilled labour to real FDI inflows, however there were existence of long-run causality. This can be interpreted that, in the short-run; education, development finance, finance and economic growth does not influence inflows of foreign direct investment in Rwanda; but it does in long-run. From the policy perspective, the Republic of Rwanda should focus more on long term goal of investing in education to improve human capital, undertake policy reforms that promotes economic growth, in addition to promoting good governance to attract development finance – especially from Nordics countries (particularly Norway and Denmark).
Resumo:
In this paper, we show how the polarisation state of a linearly polarised antenna can be recovered through the use of a three-term error correction model. The approach adopted is shown to be robust in situations where some multipath exists and where the sampling channels are imperfect with regard to both their amplitude and phase tracking. In particular, it has been shown that error of the measured polarisation tilt angle can be improved from 33% to 3% and below by applying the proposed calibration method. It is described how one can use a rotating dipole antenna as both the calibration standard and as the polarisation encoder, thus simplifying the physical arrangement of the transmitter. Experimental results are provided in order to show the utility of the approach, which could have a variety of applications including bandwidth conservative polarisation sub-modulation in advanced wireless communications systems.
Resumo:
Cette thèse porte sur l’effet du risque de prix sur la décision des agriculteurs et les transformateurs québécois. Elle se divise en trois chapitres. Le premier chapitre revient sur la littérature. Le deuxième chapitre examine l’effet du risque de prix sur la production de trois produits, à savoir le maïs grain, la viande de porc et la viande d’agneau dans la province Québec. Le dernier chapitre est centré sur l’analyse de changement des préférences du transformateur québécois de porc pour ce qui est du choix de marché. Le premier chapitre vise à montrer l’importance de l’effet du risque du prix sur la quantité produite par les agriculteurs, tel que mis en évidence par la littérature. En effet, la littérature révèle l’importance du risque de prix à l’exportation sur le commerce international. Le deuxième chapitre est consacré à l’étude des facteurs du risque (les anticipations des prix et la volatilité des prix) dans la fonction de l’offre. Un modèle d’hétéroscédasticité conditionnelle autorégressive généralisée (GARCH) est utilisé afin de modéliser ces facteurs du risque. Les paramètres du modèle sont estimés par la méthode de l’Information Complète Maximum Vraisemblance (FIML). Les résultats empiriques montrent l’effet négatif de la volatilité du prix sur la production alors que la prévisibilité des prix a un effet positif sur la quantité produite. Comme attendu, nous constatons que l’application du programme d’assurance-stabilisation des revenus agricoles (ASRA) au Québec induit une plus importante sensibilité de l’offre par rapport au prix effectif (le prix incluant la compensation de l’ASRA) que par rapport au prix du marché. Par ailleurs, l’offre est moins sensible au prix des intrants qu’au prix de l’output. La diminution de l’aversion au risque de producteur est une autre conséquence de l’application de ce programme. En outre, l’estimation de la prime marginale relative au risque révèle que le producteur du maïs est le producteur le moins averse au risque (comparativement à celui de porc ou d’agneau). Le troisième chapitre consiste en l’analyse du changement de préférence du transformateur québécois du porc pour ce qui est du choix de marché. Nous supposons que le transformateur a la possibilité de fournir les produits sur deux marchés : étranger et local. Le modèle théorique explique l’offre relative comme étant une fonction à la fois d’anticipation relative et de volatilité relative des prix. Ainsi, ce modèle révèle que la sensibilité de l’offre relative par rapport à la volatilité relative de prix dépend de deux facteurs : d’une part, la part de l’exportation dans la production totale et d’autre part, l’élasticité de substitution entre les deux marchés. Un modèle à correction d’erreurs est utilisé lors d’estimation des paramètres du modèle. Les résultats montrent l’effet positif et significatif de l’anticipation relative du prix sur l’offre relative à court terme. Ces résultats montrent donc qu’une hausse de la volatilité du prix sur le marché étranger par rapport à celle sur le marché local entraine une baisse de l’offre relative sur le marché étranger à long terme. De plus, selon les résultats, les marchés étranger et local sont plus substituables à long terme qu’à court terme.
Resumo:
International audience
Resumo:
[EN] Since Long's Interaction Hypothesis (Long, 1983) multiple studies have suggested the need of oral interaction for successful second language learning. Within this perspective, a great deal of research has been carried out to investigate the role of corrective feedback in the process of acquiring a second language, but there are still varied open debates about this issue. This comparative study seeks to contribute to the existing literature on corrective feedback in oral interaction by exploring teachers' corrective techniques and students' response to these corrections. Two learning contexts were observed and compared: a traditional English as a foreign language (EFL) classroom and a Content and Language Integrated Learning (CLIL) classroom .The main aim was to see whether our data conform to the Counterbalance Hypothesis proposed by Lyster and Mori (2006). Although results did not show significant differences between the two contexts, a qualitative analysis of the data shed some light on the differences between these two language teaching settings. The findings point to the need for further research on error correction in EFL and CLIL contexts in order to overcome the limitations of the present study.
Resumo:
Dissertação de Mestrado, Oncobiologia - Mecanismos Moleculares do Cancro, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016
Resumo:
The first chapter provides evidence that aggregate Research and Development (R&D) investment drives a persistent component in productivity growth and that this embodies a risk priced in financial markets. In a semi-endogenous growth model, this component is identified by the R&D in excess of equilibrium levels and can be approximated by the Error Correction Term in the cointegration between R&D and Total Factor Productivity. Empirically, the component results being well defined and it satisfies all key theoretical predictions: it exhibits appropriate persistency, it forecasts productivity growth, and it is associated with a cross-sectional risk premium. CAPM is the most foundational model in financial economics, but is known to empirically underestimate expected returns of low-risk assets and overestimate those with high risk. The second chapter studies how risks omission and funding tightness jointly contribute to explaining this anomaly, with the former affecting the definition of assets’ riskiness and the latter affecting how risk is remunerated. Theoretically, the two effects are shown to counteract each other. Empirically, the spread related to binding leverage constraints is found to be significant at 2% yearly. Nonetheless, average returns of portfolios that exploit this anomaly are found to mostly reflect omitted risks, in contrast to their employment in previous literature. The third chapter studies how ‘sustainability’ of assets affect discount rates, which is intrinsically mediated by the risk profile of the assets themselves. This has implications for the assessment of the sustainability-related spread and for hedging changes in the sustainability concern. This mechanism is tested on the ESG-score dimension for US data, with inconclusive evidence regarding the existence of an ESG-related premium in the first place. Also, the risk profile of the long-short ESG portfolio is not likely to impact the sign of its average returns with respect to the sustainability-spread, for the time being.
Resumo:
Notre consommation en eau souterraine, en particulier comme eau potable ou pour l'irrigation, a considérablement augmenté au cours des années. De nombreux problèmes font alors leur apparition, allant de la prospection de nouvelles ressources à la remédiation des aquifères pollués. Indépendamment du problème hydrogéologique considéré, le principal défi reste la caractérisation des propriétés du sous-sol. Une approche stochastique est alors nécessaire afin de représenter cette incertitude en considérant de multiples scénarios géologiques et en générant un grand nombre de réalisations géostatistiques. Nous rencontrons alors la principale limitation de ces approches qui est le coût de calcul dû à la simulation des processus d'écoulements complexes pour chacune de ces réalisations. Dans la première partie de la thèse, ce problème est investigué dans le contexte de propagation de l'incertitude, oú un ensemble de réalisations est identifié comme représentant les propriétés du sous-sol. Afin de propager cette incertitude à la quantité d'intérêt tout en limitant le coût de calcul, les méthodes actuelles font appel à des modèles d'écoulement approximés. Cela permet l'identification d'un sous-ensemble de réalisations représentant la variabilité de l'ensemble initial. Le modèle complexe d'écoulement est alors évalué uniquement pour ce sousensemble, et, sur la base de ces réponses complexes, l'inférence est faite. Notre objectif est d'améliorer la performance de cette approche en utilisant toute l'information à disposition. Pour cela, le sous-ensemble de réponses approximées et exactes est utilisé afin de construire un modèle d'erreur, qui sert ensuite à corriger le reste des réponses approximées et prédire la réponse du modèle complexe. Cette méthode permet de maximiser l'utilisation de l'information à disposition sans augmentation perceptible du temps de calcul. La propagation de l'incertitude est alors plus précise et plus robuste. La stratégie explorée dans le premier chapitre consiste à apprendre d'un sous-ensemble de réalisations la relation entre les modèles d'écoulement approximé et complexe. Dans la seconde partie de la thèse, cette méthodologie est formalisée mathématiquement en introduisant un modèle de régression entre les réponses fonctionnelles. Comme ce problème est mal posé, il est nécessaire d'en réduire la dimensionnalité. Dans cette optique, l'innovation du travail présenté provient de l'utilisation de l'analyse en composantes principales fonctionnelles (ACPF), qui non seulement effectue la réduction de dimensionnalités tout en maximisant l'information retenue, mais permet aussi de diagnostiquer la qualité du modèle d'erreur dans cet espace fonctionnel. La méthodologie proposée est appliquée à un problème de pollution par une phase liquide nonaqueuse et les résultats obtenus montrent que le modèle d'erreur permet une forte réduction du temps de calcul tout en estimant correctement l'incertitude. De plus, pour chaque réponse approximée, une prédiction de la réponse complexe est fournie par le modèle d'erreur. Le concept de modèle d'erreur fonctionnel est donc pertinent pour la propagation de l'incertitude, mais aussi pour les problèmes d'inférence bayésienne. Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont les algorithmes les plus communément utilisés afin de générer des réalisations géostatistiques en accord avec les observations. Cependant, ces méthodes souffrent d'un taux d'acceptation très bas pour les problèmes de grande dimensionnalité, résultant en un grand nombre de simulations d'écoulement gaspillées. Une approche en deux temps, le "MCMC en deux étapes", a été introduite afin d'éviter les simulations du modèle complexe inutiles par une évaluation préliminaire de la réalisation. Dans la troisième partie de la thèse, le modèle d'écoulement approximé couplé à un modèle d'erreur sert d'évaluation préliminaire pour le "MCMC en deux étapes". Nous démontrons une augmentation du taux d'acceptation par un facteur de 1.5 à 3 en comparaison avec une implémentation classique de MCMC. Une question reste sans réponse : comment choisir la taille de l'ensemble d'entrainement et comment identifier les réalisations permettant d'optimiser la construction du modèle d'erreur. Cela requiert une stratégie itérative afin que, à chaque nouvelle simulation d'écoulement, le modèle d'erreur soit amélioré en incorporant les nouvelles informations. Ceci est développé dans la quatrième partie de la thèse, oú cette méthodologie est appliquée à un problème d'intrusion saline dans un aquifère côtier. -- Our consumption of groundwater, in particular as drinking water and for irrigation, has considerably increased over the years and groundwater is becoming an increasingly scarce and endangered resource. Nofadays, we are facing many problems ranging from water prospection to sustainable management and remediation of polluted aquifers. Independently of the hydrogeological problem, the main challenge remains dealing with the incomplete knofledge of the underground properties. Stochastic approaches have been developed to represent this uncertainty by considering multiple geological scenarios and generating a large number of realizations. The main limitation of this approach is the computational cost associated with performing complex of simulations in each realization. In the first part of the thesis, we explore this issue in the context of uncertainty propagation, where an ensemble of geostatistical realizations is identified as representative of the subsurface uncertainty. To propagate this lack of knofledge to the quantity of interest (e.g., the concentration of pollutant in extracted water), it is necessary to evaluate the of response of each realization. Due to computational constraints, state-of-the-art methods make use of approximate of simulation, to identify a subset of realizations that represents the variability of the ensemble. The complex and computationally heavy of model is then run for this subset based on which inference is made. Our objective is to increase the performance of this approach by using all of the available information and not solely the subset of exact responses. Two error models are proposed to correct the approximate responses follofing a machine learning approach. For the subset identified by a classical approach (here the distance kernel method) both the approximate and the exact responses are knofn. This information is used to construct an error model and correct the ensemble of approximate responses to predict the "expected" responses of the exact model. The proposed methodology makes use of all the available information without perceptible additional computational costs and leads to an increase in accuracy and robustness of the uncertainty propagation. The strategy explored in the first chapter consists in learning from a subset of realizations the relationship between proxy and exact curves. In the second part of this thesis, the strategy is formalized in a rigorous mathematical framework by defining a regression model between functions. As this problem is ill-posed, it is necessary to reduce its dimensionality. The novelty of the work comes from the use of functional principal component analysis (FPCA), which not only performs the dimensionality reduction while maximizing the retained information, but also allofs a diagnostic of the quality of the error model in the functional space. The proposed methodology is applied to a pollution problem by a non-aqueous phase-liquid. The error model allofs a strong reduction of the computational cost while providing a good estimate of the uncertainty. The individual correction of the proxy response by the error model leads to an excellent prediction of the exact response, opening the door to many applications. The concept of functional error model is useful not only in the context of uncertainty propagation, but also, and maybe even more so, to perform Bayesian inference. Monte Carlo Markov Chain (MCMC) algorithms are the most common choice to ensure that the generated realizations are sampled in accordance with the observations. Hofever, this approach suffers from lof acceptance rate in high dimensional problems, resulting in a large number of wasted of simulations. This led to the introduction of two-stage MCMC, where the computational cost is decreased by avoiding unnecessary simulation of the exact of thanks to a preliminary evaluation of the proposal. In the third part of the thesis, a proxy is coupled to an error model to provide an approximate response for the two-stage MCMC set-up. We demonstrate an increase in acceptance rate by a factor three with respect to one-stage MCMC results. An open question remains: hof do we choose the size of the learning set and identify the realizations to optimize the construction of the error model. This requires devising an iterative strategy to construct the error model, such that, as new of simulations are performed, the error model is iteratively improved by incorporating the new information. This is discussed in the fourth part of the thesis, in which we apply this methodology to a problem of saline intrusion in a coastal aquifer.
Resumo:
The scope of this study was to estimate calibrated values for dietary data obtained by the Food Frequency Questionnaire for Adolescents (FFQA) and illustrate the effect of this approach on food consumption data. The adolescents were assessed on two occasions, with an average interval of twelve months. In 2004, 393 adolescents participated, and 289 were then reassessed in 2005. Dietary data obtained by the FFQA were calibrated using the regression coefficients estimated from the average of two 24-hour recalls (24HR) of the subsample. The calibrated values were similar to the the 24HR reference measurement in the subsample. In 2004 and 2005 a significant difference was observed between the average consumption levels of the FFQA before and after calibration for all nutrients. With the use of calibrated data the proportion of schoolchildren who had fiber intake below the recommended level increased. Therefore, it is seen that calibrated data can be used to obtain adjusted associations due to reclassification of subjects within the predetermined categories.