959 resultados para Drop
Resumo:
Like many West Indians, mixed-race Jamaican immigrants enter the United States with fluid notions about race and racial identifications that reflect socio-political events in their home country and that conflict with the more rigid constructions of race they encounter in the U.S. This dissertation explores the experiences of racially mixed Jamaicans in South Florida and the impact of those experiences on their racial self-characterizations through the boundary-work theoretical framework. Specifically, the study examines the impact of participants’ exposure to the one-drop rule in the U.S., by which racial identification has been historically determined by the existence or non-existence of black forebears. Employing qualitative data collected through both focus group and face-to-face semi-structured interviews, the study analyzes mixed-race Jamaicans’ encounters in the U.S. with racial boundaries, and the boundary-work that reinforces them, as well their response to these encounters. Through their stories, the dissertation examines participants’ efforts to navigate racial boundaries through choices of various racial identifications. Further, it discusses the ways in which structural forces and individual agency have interacted in the formation of these identifications. The study finds that in spite of participants’ expressed preference for non-racialism, and despite their objections to rigid racial categories, in seeking to carve out alternative identities, they are participating in the boundary-making of which they are so critical.^
Resumo:
This dissertation focuses on design challenges caused by secondary impacts to printed wiring assemblies (PWAs) within hand-held electronics due to accidental drop or impact loading. The continuing increase of functionality, miniaturization and affordability has resulted in a decrease in the size and weight of handheld electronic products. As a result, PWAs have become thinner and the clearances between surrounding structures have decreased. The resulting increase in flexibility of the PWAs in combination with the reduced clearances requires new design rules to minimize and survive possible internal collisions impacts between PWAs and surrounding structures. Such collisions are being termed ‘secondary impact’ in this study. The effect of secondary impact on board-level drop reliability of printed wiring boards (PWBs) assembled with MEMS microphone components, is investigated using a combination of testing, response and stress analysis, and damage modeling. The response analysis is conducted using a combination of numerical finite element modeling and simplified analytic models for additional parametric sensitivity studies.
Resumo:
In refrigeration systems a small amount of compressor lubricant is entrained in the refrigerant and circulated through the system, where some is retained in each component. The suction line to the compressor has the largest potential for oil retention. This paper presents results from an experimental apparatus that has been constructed to circulate POE (polyolester) oil and R410A at a controlled mass flux, OCR (oil in circulation ratio), and apparent superheat, and to directly measure the pressure drop and mass of oil retained in horizontal and vertical suction lines. The bulk vapor velocity and overall void fraction are determined from direct mass and temperature measurements. The oil retention, pressure drop, and flow regimes near the minimum ASHRAE recommended mass flux condition are explored. It was found that oil retention begins to increase sharply even above the minimum recommended flux, so conditions near the minimum should be avoided. Two relationships were developed to predict the oil retention in the vertical and horizontal suction lines. The average error from the predictions method was 10.9% for the vertical tube, and 7.9% for the horizontal tube.
Resumo:
Drag & Drop es una aplicación web diseñada para la creación de problemas a partir de piezas, en la que al profesor se le plantea una nueva posibilidad de evaluar a sus alumnos. La aplicación web servirá como un entorno dedicado a la elaboración de preguntas y respuestas. Para responder a dichas preguntas, se proporcionan unos elementos llamados “piezas” al alumno que se encargará de utilizar para construir su respuesta. A su vez, el profesor al elaborar la pregunta establecerá la solución ideal del problema y el conjunto de “piezas” que los alumnos podrán utilizar para crear las suyas propias. El alumno al terminar la solución de un problema, la enviará al servidor. Este se encargará de evaluarla y comparar la solución del alumno con la solución ideal propuesta por el profesor. Finalmente el profesor será el encargado de examinar el ejercicio y ajustar la calificación, ya sea aceptando la que propone el sistema o indicando una propia.
Resumo:
We demonstrate cascaded 100-Gb/s sub-channel add/drop from a 1-Tb/s multi-band OFDM super-channel having 2-GHz inter-sub-channel guard-bands within a recirculating loop via a hierarchical ROADM using high-resolution filters, showcasing 1000-km transmission reach and five ROADM node passages for the add/drop sub-channel when hybrid Raman-EDFA is implemented.
Resumo:
In truck manufacturing, the exhaust and air inlet pipes are specialized equipment that requires highly skilled, heavy machinery and small batch production methods. This paper describes a project to develop the computer numerically controlled (CNC) pipe bending process for a truck component manufacturer. The company supplies a huge range of heavy duty truck parts to the domestic market and is a significant supplier in Australia. The company has been using traditional methods of machine assisted manual pipe bending techniques. In a drive of continuous improvement, the company has acquired a pre-owned CNC bending machine capable of bending pipes automatically up to 25 bends. However, due to process mismatch, this machine is only used for single bending operation. The researchers studied the bending system and changed the manufacturing process. Using an example exhaust pipe as the benchmark, a significant drop of manufacturing lead time from 70 minutes to 40 minutes for each pipe was demonstrated. There was also a decrease of material cost due to the multiple bends part in one piece without cutting excessive materials for each single bend like it used to be.
Resumo:
In recent decades a number of Australian artists and teacher/artists have given serious attention to the creation of performance forms and performance engagement models that respect children’s intelligence, engage with themes of relevance, avoid the cliche´s of children’s theatre whilst connecting both sincerely and playfully with current understandings of the way in which young children develop and engage with the world. Historically a majority of performing arts companies touring Australian schools or companies seeking schools to view a performance in a dedicated performance venue engage with their audiences in what can be called a ‘drop-in drop-out’ model. A six-month practice-led research project (The Tashi Project) which challenged the tenets of the ‘drop-in drop-out’ model has been recently undertaken by Sandra Gattenhof and Mark Radvan in conjunction with early childhood students from three Brisbane primary school classrooms who were positioned as co-researchers and co-artists. The children, researchers and performers worked in a complimentary relationship in both the artistic process and the development of product.
Resumo:
President’s Message AITPM President’s Message, July 2009 Hello fellow AITPM members, It’s now very early July so many Australians are going to experience a range of new, or increases in, fees, charges, and perhaps taxes by State and local governments. For example, Queenslanders are to be hit at the petrol pump, no longer living with the luxury of the State’s previous 8c per litre fuel subsidy, bringing general motorists’ fuel costs into line with the other States. A consolation is that they now don’t have to live with the real or perceived “price gouging” that has appeared in the past to make Queensland prices much closer than 8c to those in other States. Environmental lobbyists argue that this Government’s decision brings public transport costs closer to parity with private transport. However, my sense from sloppy petrol price elasticities is that the State’s motorists will get used to the reversal of what was a reverse tax pretty quickly, an amount which can be less than day-of-the week fluctuation. On the other hand, withholding this State revenue may help in some way the funding of the several major public transport infrastructure projects in progress; not to mention some of the cost of running the Transit Authority’s expanding service commitments. Other policy actions, such as a Federal Government review of taxation on employees’ package vehicles, which might discourage rather than encourage excess kilometres travelled, may have a greater environmental benefit. Of course, a downside is that many vehicles used so are Australian built, and discouraging fleet turnover may damage an industry which faces ever increasing uncertainty, and particularly at the present, is in need of some care and attention. I for one hope to this end that the new 4 cylinder (1.8L petrol or 2L diesel) so called “true Holden” Cruze and Toyota’s pending Camry Hybrid are both roaring successes, and will be taken up in droves as fleet and employee use vehicles. I’m not sure what drive-trains Ford and Holden plan to drop into their next full sized models but even if they’re not Australian sourced, let’s hope they coordinate the requisite performance expected by the “Aussie Battler” with suitable green credentials. I am also encouraged to see that already many Government fleet vehicles are smaller in size, but still fit for purpose. For instance, my local police station uses the Camry based Aurion as a district car. I close again in reminding everyone that AITPM’s flagship event, the 2009 AITPM National Conference, Traffic Beyond Tomorrow, is being held in Adelaide from 5 to 7 August. www.aitpm.com has all of the details about how to register, sponsor a booth, session, etc. Best regards all, Jon Bunker
Resumo:
The provision of accessible and cost-effective treatment to a large number of problem drinkers is a significant challenge to health services. Previous data suggest that a correspondence intervention may assist in these efforts. We recruited 277 people with alcohol abuse problems and randomly allocated them to immediate cognitive behavioral treatment by correspondence (ICBT), 2 months in a waiting list (WL2-CBT), self-monitoring (SM2-CBT), or extended self-monitoring (SM6-CBT). Everyone received correspondence CBT after the control period. Over 2 months later, no drop in alcohol intake occurred in the waiting list, and CBT had a greater impact than SM. No further gains from SM were seen after 2 months. Effects of CBT were well maintained and were equivalent, whether it was received immediately or after 2 to 6 months of self-monitoring. Weekly alcohol intake fell 48% from pretreatment to 18.6 alcohol units at 12 months. Our results confirmed that correspondence CBT for alcohol abuse was accessible and effective for people with low physical dependence.
Resumo:
The degradation of high voltage electrical insulation is a prime factor that can significantly influence the reliability performance and the costs of maintaining high voltage electricity networks. Little information is known about the system of localized degradation from corona discharges on the relatively new silicone rubber sheathed composite insulators that are now being widely used in high voltage applications. This current work focuses on the fundamental principles of electrical corona discharge phenomena to provide further insights to where damaging surface discharges may localize and examines how these discharges may degrade the silicone rubber material. Although water drop corona has been identified by many authors as a major cause of deterioration of silicone rubber high voltage insulation until now no thorough studies have been made of this phenomenon. Results from systematic measurements taken using modern digital instrumentation to simultaneously record the discharge current pulses and visible images associated with corona discharges from between metal electrodes, metal electrodes and water drops, and between waters drops on the surface of silicone rubber insulation, using a range of 50 Hz voltages are inter compared. Visual images of wet electrodes show how water drops can play a part in encouraging flashover, and the first reproducible visual images of water drop corona at the triple junction of water air and silicone rubber insulation are presented. A study of the atomic emission spectra of the corona produced by the discharge from its onset up to and including spark-over, using a high resolution digital spectrometer with a fiber optic probe, provides further understanding of the roles of the active species of atoms and molecules produced by the discharge that may be responsible for not only for chemical changes of insulator surfaces, but may also contribute to the degradation of the metal fittings that support the high voltage insulators. Examples of real insulators and further work specific to the electrical power industry are discussed. A new design concept to prevent/reduce the damaging effects of water drop corona is also presented.
Resumo:
This paper presents the findings of an investigation into the rate-limiting mechanism for the heterogeneous burning in oxygen under normal gravity and microgravity of cylindrical iron rods. The original objective of the work was to determine why the observed melting rate for burning 3.2-mm diameter iron rods is significantly higher in microgravity than in normal gravity. This work, however, also provided fundamental insight into the rate-limiting mechanism for heterogeneous burning. The paper includes a summary of normal-gravity and microgravity experimental results, heat transfer analysis and post-test microanalysis of quenched samples. These results are then used to show that heat transfer across the solid/liquid interface is the rate-limiting mechanism for melting and burning, limited by the interfacial surface area between the molten drop and solid rod. In normal gravity, the work improves the understanding of trends reported during standard flammability testing for metallic materials, such as variations in melting rates between test specimens with the same cross-sectional area but different crosssectional shape. The work also provides insight into the effects of configuration and orientation, leading to an improved application of standard test results in the design of oxygen system components. For microgravity applications, the work enables the development of improved methods for lower cost metallic material flammability testing programs. In these ways, the work provides fundamental insight into the heterogeneous burning process and contributes to improved fire safety for oxygen systems in applications involving both normal-gravity and microgravity environments.
Resumo:
Data generated in a normal gravity environment is often used in design and risk assessment for reduced gravity applications. It has been clearly demonstrated that this is a conservative approach for non-metallic materials which have been repeatedly shown to be less flammable in a reduced gravity environment. However, recent work has demonstrated this is not true for metallic materials. This work, conducted in a newly completed drop tower observed a significant increase in both lowest burn pressure and burn rate in reduced gravity. Hence the normal gravity qualification of a metallic materials’ lowest burn pressure or burn rate for reduced-gravity or space-based systems is clearly not conservative. This paper presents a summary of this work and the results obtained for several metallic materials showing an increased flammability and burn rate for a range of oxygen pressures, and discusses the implications of this work on the fire-safety of space-based systems.
Resumo:
An investigation has been made of the interactions between silicone oil and various solid substrates immersed in aqueous solutions. Measurements were made using an atomic force microscope (AFM) using the colloid-probe method. The silicone oil drop is simulated by coating a small silica sphere with the oil, and measuring the force as this coated sphere is brought close to contact with a flat solid surface. It is found that the silicone oil surface is negatively charged, which causes a double-layer repulsion between the oil drop and another negatively charged surface such as mica. With hydrophilic solids, this repulsion is strong enough to prevent attachment of the drop to the solid. However, with hydrophobic surfaces there is an additional attractive force which overcomes the double-layer repulsion, and the silicone oil drop attaches to the solid. A "ramp" force appears in some, but not all, of the data sets. There is circumstantial evidence that this force results from compression of the silicone oil film coated on the glass sphere.
Resumo:
Intelligent surveillance systems typically use a single visual spectrum modality for their input. These systems work well in controlled conditions, but often fail when lighting is poor, or environmental effects such as shadows, dust or smoke are present. Thermal spectrum imagery is not as susceptible to environmental effects, however thermal imaging sensors are more sensitive to noise and they are only gray scale, making distinguishing between objects difficult. Several approaches to combining the visual and thermal modalities have been proposed, however they are limited by assuming that both modalities are perfuming equally well. When one modality fails, existing approaches are unable to detect the drop in performance and disregard the under performing modality. In this paper, a novel middle fusion approach for combining visual and thermal spectrum images for object tracking is proposed. Motion and object detection is performed on each modality and the object detection results for each modality are fused base on the current performance of each modality. Modality performance is determined by comparing the number of objects tracked by the system with the number detected by each mode, with a small allowance made for objects entering and exiting the scene. The tracking performance of the proposed fusion scheme is compared with performance of the visual and thermal modes individually, and a baseline middle fusion scheme. Improvement in tracking performance using the proposed fusion approach is demonstrated. The proposed approach is also shown to be able to detect the failure of an individual modality and disregard its results, ensuring performance is not degraded in such situations.