970 resultados para Differential equations, Partial


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider stochastic partial differential equations with multiplicative noise. We derive an algorithm for the computer simulation of these equations. The algorithm is applied to study domain growth of a model with a conserved order parameter. The numerical results corroborate previous analytical predictions obtained by linear analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During recent years, the theory of differential inequalities has been extensively used to discuss singular perturbation problems and method of lines to partial differential equations. The present thesis deals with some differential inequality theorems and their applications to singularly perturbed initial value problems, boundary value problems for ordinary differential equations in Banach space and initial boundary value problems for parabolic differential equations. The method of lines to parabolic and elliptic differential equations are also dealt The thesis is organised into nine chapters

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Usually typical dynamical systems are non integrable. But few systems of practical interest are integrable. The soliton concept is a sophisticated mathematical construct based on the integrability of a class ol' nonlinear differential equations. An important feature in the clevelopment. of the theory of solitons and of complete integrability has been the interplay between mathematics and physics. Every integrable system has a lo11g list of special properties that hold for integrable equations and only for them. Actually there is no specific definition for integrability that is suitable for all cases. .There exist several integrable partial clillerential equations( pdes) which can be derived using physically meaningful asymptotic teclmiques from a very large class of pdes. It has been established that many 110nlinear wa.ve equations have solutions of the soliton type and the theory of solitons has found applications in many areas of science. Among these, well-known equations are Korteweg de-Vries(KdV), modified KclV, Nonlinear Schr6dinger(NLS), sine Gordon(SG) etc..These are completely integrable systems. Since a small change in the governing nonlinear prle may cause the destruction of the integrability of the system, it is interesting to study the effect of small perturbations in these equations. This is the motivation of the present work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the theory of the Navier-Stokes equations, the proofs of some basic known results, like for example the uniqueness of solutions to the stationary Navier-Stokes equations under smallness assumptions on the data or the stability of certain time discretization schemes, actually only use a small range of properties and are therefore valid in a more general context. This observation leads us to introduce the concept of SST spaces, a generalization of the functional setting for the Navier-Stokes equations. It allows us to prove (by means of counterexamples) that several uniqueness and stability conjectures that are still open in the case of the Navier-Stokes equations have a negative answer in the larger class of SST spaces, thereby showing that proof strategies used for a number of classical results are not sufficient to affirmatively answer these open questions. More precisely, in the larger class of SST spaces, non-uniqueness phenomena can be observed for the implicit Euler scheme, for two nonlinear versions of the Crank-Nicolson scheme, for the fractional step theta scheme, and for the SST-generalized stationary Navier-Stokes equations. As far as stability is concerned, a linear version of the Euler scheme, a nonlinear version of the Crank-Nicolson scheme, and the fractional step theta scheme turn out to be non-stable in the class of SST spaces. The positive results established in this thesis include the generalization of classical uniqueness and stability results to SST spaces, the uniqueness of solutions (under smallness assumptions) to two nonlinear versions of the Euler scheme, two nonlinear versions of the Crank-Nicolson scheme, and the fractional step theta scheme for general SST spaces, the second order convergence of a version of the Crank-Nicolson scheme, and a new proof of the first order convergence of the implicit Euler scheme for the Navier-Stokes equations. For each convergence result, we provide conditions on the data that guarantee the existence of nonstationary solutions satisfying the regularity assumptions needed for the corresponding convergence theorem. In the case of the Crank-Nicolson scheme, this involves a compatibility condition at the corner of the space-time cylinder, which can be satisfied via a suitable prescription of the initial acceleration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a technique for the rapid and reliable evaluation of linear-functional output of elliptic partial differential equations with affine parameter dependence. The essential components are (i) rapidly uniformly convergent reduced-basis approximations — Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N (optimally) selected points in parameter space; (ii) a posteriori error estimation — relaxations of the residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs; and (iii) offline/online computational procedures — stratagems that exploit affine parameter dependence to de-couple the generation and projection stages of the approximation process. The operation count for the online stage — in which, given a new parameter value, we calculate the output and associated error bound — depends only on N (typically small) and the parametric complexity of the problem. The method is thus ideally suited to the many-query and real-time contexts. In this paper, based on the technique we develop a robust inverse computational method for very fast solution of inverse problems characterized by parametrized partial differential equations. The essential ideas are in three-fold: first, we apply the technique to the forward problem for the rapid certified evaluation of PDE input-output relations and associated rigorous error bounds; second, we incorporate the reduced-basis approximation and error bounds into the inverse problem formulation; and third, rather than regularize the goodness-of-fit objective, we may instead identify all (or almost all, in the probabilistic sense) system configurations consistent with the available experimental data — well-posedness is reflected in a bounded "possibility region" that furthermore shrinks as the experimental error is decreased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers two-stage iterative processes for solving the linear system $Af = b$. The outer iteration is defined by $Mf^{k + 1} = Nf^k + b$, where $M$ is a nonsingular matrix such that $M - N = A$. At each stage $f^{k + 1} $ is computed approximately using an inner iteration process to solve $Mv = Nf^k + b$ for $v$. At the $k$th outer iteration, $p_k $ inner iterations are performed. It is shown that this procedure converges if $p_k \geqq P$ for some $P$ provided that the inner iteration is convergent and that the outer process would converge if $f^{k + 1} $ were determined exactly at every step. Convergence is also proved under more specialized conditions, and for the procedure where $p_k = p$ for all $k$, an estimate for $p$ is obtained which optimizes the convergence rate. Examples are given for systems arising from the numerical solution of elliptic partial differential equations and numerical results are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By modelling the average activity of large neuronal populations, continuum mean field models (MFMs) have become an increasingly important theoretical tool for understanding the emergent activity of cortical tissue. In order to be computationally tractable, long-range propagation of activity in MFMs is often approximated with partial differential equations (PDEs). However, PDE approximations in current use correspond to underlying axonal velocity distributions incompatible with experimental measurements. In order to rectify this deficiency, we here introduce novel propagation PDEs that give rise to smooth unimodal distributions of axonal conduction velocities. We also argue that velocities estimated from fibre diameters in slice and from latency measurements, respectively, relate quite differently to such distributions, a significant point for any phenomenological description. Our PDEs are then successfully fit to fibre diameter data from human corpus callosum and rat subcortical white matter. This allows for the first time to simulate long-range conduction in the mammalian brain with realistic, convenient PDEs. Furthermore, the obtained results suggest that the propagation of activity in rat and human differs significantly beyond mere scaling. The dynamical consequences of our new formulation are investigated in the context of a well known neural field model. On the basis of Turing instability analyses, we conclude that pattern formation is more easily initiated using our more realistic propagator. By increasing characteristic conduction velocities, a smooth transition can occur from self-sustaining bulk oscillations to travelling waves of various wavelengths, which may influence axonal growth during development. Our analytic results are also corroborated numerically using simulations on a large spatial grid. Thus we provide here a comprehensive analysis of empirically constrained activity propagation in the context of MFMs, which will allow more realistic studies of mammalian brain activity in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider an initial value problem for a class of generalized ODEs, also known as Kurzweil equations, and we prove the existence of a local semidynamical system there. Under certain perturbation conditions, we also show that this class of generalized ODEs admits a discontinuous semiflow which we shall refer to as an impulsive semidynamical system. As a consequence, we obtain LaSalle`s invariance principle for such a class of generalized ODEs. Due to the importance of LaSalle`s invariance principle in studying stability of differential systems, we include an application to autonomous ordinary differential systems with impulse action at variable times. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive the soliton matrices corresponding to an arbitrary number of higher-order normal zeros for the matrix Riemann-Hilbert problem of arbitrary matrix dimension, thus giving the complete solution to the problem of higher-order solitons. Our soliton matrices explicitly give all higher-order multisoliton solutions to the nonlinear partial differential equations integrable through the matrix Riemann-Hilbert problem. We have applied these general results to the three-wave interaction system, and derived new classes of higher-order soliton and two-soliton solutions, in complement to those from our previous publication [Stud. Appl. Math. 110, 297 (2003)], where only the elementary higher-order zeros were considered. The higher-order solitons corresponding to nonelementary zeros generically describe the simultaneous breakup of a pumping wave (u(3)) into the other two components (u(1) and u(2)) and merger of u(1) and u(2) waves into the pumping u(3) wave. The two-soliton solutions corresponding to two simple zeros generically describe the breakup of the pumping u(3) wave into the u(1) and u(2) components, and the reverse process. In the nongeneric cases, these two-soliton solutions could describe the elastic interaction of the u(1) and u(2) waves, thus reproducing previous results obtained by Zakharov and Manakov [Zh. Eksp. Teor. Fiz. 69, 1654 (1975)] and Kaup [Stud. Appl. Math. 55, 9 (1976)]. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss the existence of compact attractor for the abstract semilinear evolution equation u = Au + f (t, u); the results are applied to damped partial differential equations of hyperbolic type. Our approach is a combination of Liapunov method with the theory of alpha-contractions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study existence, bifurcation, and symmetries of small solutions of the nonlinear equation Lx = N(x, p, epsilon) + mu f, which is supposed to be equivariant under the action of a group OHm, and where f is supposed to be OHm-invariant. We assume that L is a linear operator and N(., p, epsilon) is a nonlinear operator, both defined in a Banach space X, with values in a Banach space Z, and p, mu, and epsilon are small real parameters. Under certain conditions we show the existence of symmetric solutions and under additional conditions we prove that these are the only feasible solutions. Some examples of nonlinear ordinary and partial differential equations are analyzed. (C) 1995 Academic Press, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A time reversal symmetric regularized electron exchange model was used to elastic scattering, target elastic Ps excitations and target inelastic excitation of hydrogen in a five state coupled model. A singlet Ps-H-S-wave resonance at 4.01 eV of width 0.15 eV and a P-wave resonance at 5.08 eV of width 0.004 eV were obtained using this model. The effect on the convergence of the coupled-channel scheme due to the inclusion of the excited Ps and H states was also analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we show that the equation delta u/delta (z) over bar + Gu = f, where the elements involved are in generalized functions context, has a local solution in the generalized functions context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wegen der fortschreitenden Miniaturisierung von Halbleiterbauteilen spielen Quanteneffekte eine immer wichtigere Rolle. Quantenphänomene werden gewöhnlich durch kinetische Gleichungen beschrieben, aber manchmal hat eine fluid-dynamische Beschreibung Vorteile: die bessere Nutzbarkeit für numerische Simulationen und die einfachere Vorgabe von Randbedingungen. In dieser Arbeit werden drei Diffusionsgleichungen zweiter und vierter Ordnung untersucht. Der erste Teil behandelt die implizite Zeitdiskretisierung und das Langzeitverhalten einer degenerierten Fokker-Planck-Gleichung. Der zweite Teil der Arbeit besteht aus der Untersuchung des viskosen Quantenhydrodynamischen Modells in einer Raumdimension und dessen Langzeitverhaltens. Im letzten Teil wird die Existenz von Lösungen einer parabolischen Gleichung vierter Ordnung in einer Raumdimension bewiesen, und deren Langzeitverhalten studiert.