900 resultados para Detection sensitivity
Resumo:
Dipicolinic acid (DPA) is an excellent marker compound for bacterial spores, including those of Bacillus anthracis ( anthrax). Surface-enhanced Raman spectroscopy (SERS) potentially has the sensitivity and discrimination needed for trace DPA analysis, but mixing DPA solutions with citrate-reduced silver colloid only yielded measurable SERS spectra at much higher (> 80 ppm) concentrations than would be desirable for anthrax detection. Aggregation of the colloid with halide salts eliminated even these small DPA bands but aggregation with Na2SO4(aq) resulted in a remarkable increase in the DPA signals. With sulfate aggregation even 1 ppm solutions gave detectable signals with 10 s accumulation times, which is in the sensitivity range required. Addition of CNS- as an internal standard allowed quantitative DPA analysis, plotting the intensity of the strong DPA 1010 cm(-1) band (normalised to the ca. 2120 cm(-1) CNS- band) against DPA concentration gave a linear calibration (R-2 = 0.986) over the range 0 - 50 ppm DPA. The inclusion of thiocyanate also allows false negatives due to accidental deactivation of the enhancing medium to be detected.
Resumo:
Loop-mediated isothermal amplification (LAMP) is an innovative technique that allows the rapid detection of target nucleic acid sequences under isothermal conditions without the need for complex instrumentation. The development, optimization, and clinical validation of a LAMP assay targeting the ctrA gene for the rapid detection of capsular Neisseria meningitidis were described. Highly specific detection of capsular N. meningitidis type strains and clinical isolates was demonstrated, with no cross-reactivity with other Neisseria spp. or with a comprehensive panel of other common human pathogens. The lower limit of detection was 6 ctrA gene copies detectable in 48 min, with positive reactions readily identifiable visually via a simple color change. Higher copy numbers could be detected in as little as 16 min. When applied to a total of 394 clinical specimens, the LAMP assay in comparison to a conventional TaqMan® based real-time polymerase chain reaction system demonstrated a sensitivity of 100% and a specificity of 98.9% with a ? coefficient of 0.942. The LAMP method represents a rapid, sensitive, and highly specific technique for the detection of N. meningitidis and has the potential to be used as a point-of-care molecular test and in resource-poor settings.
Resumo:
The spontaneous formation of the neurotoxic carcinogen acrylamide in a wide range of cooked foods has recently been discovered. These foods include bread and other bakery products, crisps, chips, breakfast cereals, and coffee. To date, the diminutive size of acrylamide (71.08Da) has prevented the development of screening immunoassays for this chemical. In this study, a polyclonal antibody capable of binding the carcinogen was produced by the synthesis of an immunogen comprising acrylamide derivatised with 3-mercaptobenzoic acid (3-MBA), and its conjugation to the carrier protein bovine thyroglobulin. Antiserum from the immunised rabbit was harvested and fully characterised. it displayed no binding affinity for acrylamide or 3-MBA but had a high affinity for 3-MBA-derivitised acrylamide. The antisera produced was utilised in the development of an ELISA based detection system for acrylamide. Spiked water samples were assayed for acrylamide content using a previously published extraction method validated for coffee, crispbread, potato, milk chocolate and potato crisp matrices. Extracted acrylamide was then subjected to a rapid 1-h derivatisation with 3-MBA, pre-analysis. The ELISA was shown to have a high specificity for acrylamide, with a limit of detection in water samples of 65.7 mu g kg(-1), i.e. potentially suitable for acrylamide detection in a wide range of food commodities. Future development of this assay will increase sensitivity further. This is the first report of an immunoassay capable of detecting the carcinogen, as its small size has necessitated current analytical detection via expensive, slower, physico-chemical techniques such as Gas or Liquid Chromatography coupled to Mass Spectrometry. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The increasing availability and use of sports supplements is of concern as highlighted by a number of studies reporting endocrine disruptor contamination in such products. The health food supplement market, including sport supplements, is growing across the Developed World. Therefore, the need to ensure the quality and safety of sport supplements for the consumer is essential. The development and validation of two reporter gene assays coupled with solid phase sample preparation enabling the detection of estrogenic and androgenic constituents in sport supplements is reported. Both assays were shown to be of high sensitivity with the estrogen and androgen reporter gene assays having an EC50 of 0.01 ng mL-1 and 0.16 ng mL-1 respectively. The developed assays were applied in a survey of 63 sport supplements samples obtained across the Island of Ireland with an additional seven reference samples previously investigated using LC–MS/MS. Androgen and estrogen bio-activity was found in 71% of the investigated samples. Bio-activity profiling was further broken down into agonists, partial agonists and antagonists. Supplements (13) with the strongest estrogenic bio-activity were chosen for further investigation. LC–MS/MS analysis of these samples determined the presence of phytoestrogens in seven of them. Supplements (38) with androgen bio-activity were also selected for further investigation. Androgen agonist bio-activity was detected in 12 supplements, antagonistic bio-activity was detected in 16 and partial antagonistic bio-activity was detected in 10. A further group of supplements (7) did not present androgenic bio-activity when tested alone but enhanced the androgenic agonist bio-activity of dihydrotestosterone when combined. The developed assays offer advantages in detection of known, unknown and low-level mixtures of endocrine disruptors over existing analytical screening techniques. For the detection and identification of constituent hormonally active compounds the combination of biological and physio-chemical techniques is optimal.
Resumo:
An enzyme labeled immunosorbent assay (ELISA) and surface plasmon resonance (SPR) biosensor assay for the detection of paralytic shellfish poisoning (PSP) toxins were developed and a comparative evaluation was performed. A polyclonal antibody (BC67) used in both assay formats was raised to saxitoxin–jeffamine–BSA in New Zealand white rabbits. Each assay format was designed as an inhibition assay. Shellfish samples (n = 54) were evaluated by each method using two simple rapid extraction procedures and compared to the AOAC high performance liquid chromatography (HPLC) and the mouse bioassay (MBA). The results of each assay format were comparable with the HPLC and MBA methods and demonstrate that an antibody with high sensitivity and broad specificity to PSP toxins can be applied to different immunological techniques. The method of choice will depend on the end-users needs. The reduced manual labor and simplicity of operation of the SPR biosensor compared to ELISA, ease of sample extraction and superior real time semi-quantitative analysis are key features that could make this technology applicable in a high-throughput monitoring unit.
Resumo:
Introduction: Detection of the V600E hotspot mutation in BRAF oncogene is extremely useful for the screening of hereditary non-polyposis colorectal cancer (Lynch's syndrome) and for the prediction of sensitivity to MEK inhibitors. Here we describe a method for detecting this mutation based upon pyrosequencing technology.
Resumo:
The aim of this study was to validate the application of a commercially available multiplex reverse transcription polymerase chain reaction (RT-PCR) assay [He-mavision-7 System] for the seven most common leukemia translocations for routine molecular diagnostic hematopathology practice. A total of 98 samples, comprising four groups, were evaluated: Group 1, 16 diagnostic samples molecularly positive by our existing laboratory-developed assays for PML-RARalpha/t (15; 17) or BCR-ABL/t (9;22); Group 2, 51 diagnostic samples negative by our laboratory-developed assays for PML-RARalpha/t (15;17) or BCR-ABL/t (9;22); Group 3, 21 prospectively analyzed diagnostic cases, without prior molecular studies; and Group 4, 10 minimal residual disease (MRD) samples. Analysis of the two previously studied cohorts (Groups 1 and 2) confirmed the diagnostic sensitivity and specificity of the multiplex assay with regard to these two translocations. Additionally, however, in the
Resumo:
Optical techniques toward the realization of sensitive and selective biosensing platforms have received considerable attention in recent times. Techniques based on interferometry, surface plasmon resonance, and waveguides have all proved popular, while spectroscopy in particular offers much potential. Raman spectroscopy is an information-rich technique in which the vibrational frequencies reveal much about the structure of a compound, but it is a weak process and offers poor sensitivity. In response to this problem, surface-enhanced Raman scattering (SERS) has received much attention, due to significant increases in sensitivity instigated by bringing the sample into contact with an enhancing substrate. Here we discuss a facile and rapid technique for the detection of pterins using SERS-active colloidal silver suspensions. Pterins are a family of biological compounds that are employed in nature in color pigmentation and as facilitators in metabolic pathways. In this work, small volumes of xanthopterin, isoxanthopterin, and 7,8-dihydrobiopterin have been examined while adsorbed to silver colloids. Limits of detection have been examined for both xanthopterin and isoxanthopterin using a 10-s exposure to a 12 mW 532 nm laser, which, while showing a trade-off between scan time and signal intensity, still provides the opportunity for the investigation of simultaneous detection of both pterins in solution. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3600658]
Resumo:
Background: Non-invasive diagnosis of acute myocardial infarction (AMI) associated with significant left main stem (LMS) stenosis remains challenging.
Methods: Consecutive patients presenting with acute ischaemic-type chest pain from 2000 to 2010 were analysed. Entry criteria: 12-lead ECG and Body Surface Potential Map (BSPM) at presentation, cardiac troponin T (cTnT) =12?h and coronary angiography during admission. cTnT =0.03?µg/l defined AMI. ECG abnormalities assessed: STEMI by Minnesota criteria; ST elevation (STE) aVR =0.5?mm; ST depression (STD) =0.5?mm in =2 contiguous leads (CL); T-wave inversion (TWI) =1?mm in =2 CL. BSPM STE was =2?mm in anterior, =1?mm in lateral, inferior, right ventricular or high right anterior and =0.5?mm in posterior territories. Significant LMS stenosis was =70%.
Results: Enrolled were 2810 patients (aged 60?±?12 years; 71% male). Of these, 116 (4.1%) had significant LMS stenosis with AMI occurring in 92 (79%). STEMI by Minnesota criteria occurred in 13 (11%) (sensitivity 12%, specificity 92%), STE in lead aVR in 23 (20%) (sensitivity 23%, specificity 92%), TWI in 38 (33%) (sensitivity 34%, specificity 71%) and STD in 51 (44%) (sensitivity 49%, specificity 75%). BSPM STE occurred in 85 (73%): sensitivity 88%, specificity 83%, positive predictive value 95% and negative predictive value 65%. Of those with AMI, 74% had STE in either the high right anterior or right ventricular territories not identified by the 12-lead ECG. C-Statistic for AMI diagnosis using BSPM STE was 0.800 (P?<?0.001).
Conclusion: In patients with significant LMS stenosis presenting with chest pain, BSPM STE has improved sensitivity (88%), with specificity 83%, over 12-lead ECG in the diagnosis of AMI.
Resumo:
Paralytic shellfish poisoning (PSP) toxins are produced by certain marine dinoflagellates and may accumulate in bivalve molluscs through filter feeding. The Mouse Bioassay (MBA) is the internationally recognised reference method of analysis, but it is prone to technical difficulties and regarded with increasing disapproval due to ethical reasons. As such, alternative methods are required. A rapid surface plasmon resonance (SPR) biosensor inhibition assay was developed to detect PSP toxins in shellfish by employing a saxitoxin polyclonal antibody (R895). Using an assay developed for and validated on the Biacore Q biosensor system, this project focused on transferring the assay to a high-throughput, Biacore T100 biosensor in another laboratory. This was achieved using a prototype PSP toxin kit and recommended assay parameters based on the Biacore Q method. A monoclonal antibody (GT13A) was also assessed. Even though these two instruments are based on SPR principles, they vary widely in their mode of operation including differences in the integrated mu-fluidic cartridges, autosampler system, and sensor chip compatibilities. Shellfish samples (n = 60), extracted using a simple, rapid procedure, were analysed using each platform, and results were compared to AOAC high performance liquid chromatography (HPLC) and MBA methods. The overall agreement, based on statistical 2 x 2 comparison tables, between each method ranged from 85% to 94.4% using R895 and 77.8% to 100% using GT13A. The results demonstrated that the antibody based assays with high sensitivity and broad specificity to PSP toxins can be applied to different biosensor platforms. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Water-based colourimetric indicator films are shown to have increased operational lifetimes under ambient conditions compared to similar solvent-based counterparts. The response and sensitivity characteristics of a water-based, carbon dioxide-responsive ink are characterised and compared and contrasted to those of a similar solvent-based indicator. The changes in the response characteristics of the ink as a function of the amount of base (sodium hydrogen carbonate) and plasticizer (glycerol) contained in the ink are reported, as are the effects of varying ambient temperature and humidity. The ink is incorporated into a felt tip pen and applied to a number of different substrates, producing a distinct, reversible colour change on all tested surfaces, when a sufficient level of carbon dioxide is present. The possible application of the indicator is discussed briefly.
Resumo:
Furazolidone, a nitrofuran antibiotic, is banned from use in food animal production within the European Union. Increasingly, compliance with this ban is monitored by use of analytical methods to detect a stable tissue-bound metabolite, 3-amino-2-oxazolidinone (AOZ). Widespread use of furazolidone in poultry and prawns imported into Europe highlighted the urgent need for development of nitrofuran immunoassay screening tests. The first enzyme-linked immunoabsorbant assay for detection of AOZ residues in prawns (shrimps) is now described. Prawn samples were derivatized with o-nitrobenzaldehyde, extracted into ethyl acetate, washed with hexane and applied to a competitive enzyme immunoassay based on a rabbit polyclonal antiserum. Assay limit of detection (LOD) (mean+3 s) calculated from the analysis of 20 known negative cold and warm water prawn samples was 0.1 mug kg(-1). Intra- and interassay relative standard deviations were determined as 18.8 and 38.2%, respectively, using a negative prawn fortified at 0.7 mug kg(-1). The detection capability (CCbeta), defined as the concentration of AOZ at which 20 different fortified samples yielded results above the LOD, was achieved at fortification between 0.4 and 0.7 mug kg(-1). Incurred prawn samples (n=8) confirmed by liquid chromatography coupled with tandem mass spectrometry detection to contain AOZ concentrations between 0.4 and 12.7 mug kg(-1) were all screened positive by this enzyme-linked immunoabsorbant assay. Further data are presented and discussed with regard to calculating assay LOD based on accepting a 5% false-positive rate with representative negative prawn samples. Such an acceptance improves the sensitivity of an ELISA and in this case permitted an LOD of 0.05 mug kg(-1) and a CCbeta of below 0.4 mug kg(-1).
Resumo:
Background: There is growing interest in the potential utility of molecular diagnostics in improving the detection of life-threatening infection (sepsis). LightCycler® SeptiFast is a multipathogen probebased real-time PCR system targeting DNA sequences of bacteria and fungi present in blood samples within a few hours. We report here the protocol of the first systematic review of published clinical diagnostic accuracy studies of this technology when compared with blood culture in the setting of suspected sepsis. Methods/design: Data sources: the Cochrane Database of Systematic Reviews, the Database of Abstracts of Reviews of Effects (DARE), the Health Technology Assessment Database (HTA), the NHS Economic Evaluation Database (NHSEED), The Cochrane Library, MEDLINE, EMBASE, ISI Web of Science, BIOSIS Previews, MEDION and the Aggressive Research Intelligence Facility Database (ARIF). Study selection: diagnostic accuracy studies that compare the real-time PCR technology with standard culture results performed on a patient's blood sample during the management of sepsis. Data extraction: three reviewers, working independently, will determine the level of evidence, methodological quality and a standard data set relating to demographics and diagnostic accuracy metrics for each study. Statistical analysis/data synthesis: heterogeneity of studies will be investigated using a coupled forest plot of sensitivity and specificity and a scatter plot in Receiver Operator Characteristic (ROC) space. Bivariate model method will be used to estimate summary sensitivity and specificity. The authors will investigate reporting biases using funnel plots based on effective sample size and regression tests of asymmetry. Subgroup analyses are planned for adults, children and infection setting (hospital vs community) if sufficient data are uncovered. Dissemination: Recommendations will be made to the Department of Health (as part of an open-access HTA report) as to whether the real-time PCR technology has sufficient clinical diagnostic accuracy potential to move forward to efficacy testing during the provision of routine clinical care.
Resumo:
Loop-mediated isothermal amplification (LAMP) is an innovative technique that allows the rapid detection of target nucleic acid sequences under isothermal conditions without the need for complex instrumentation. The development, optimization, and clinical validation of a LAMP assay targeting the ctrA gene for the rapid detection of capsular Neisseria meningitidis were described. Highly specific detection of capsular N. meningitidis type strains and clinical isolates was demonstrated, with no cross-reactivity with other Neisseria spp. or with a comprehensive panel of other common human pathogens. The lower limit of detection was 6 ctrA gene copies detectable in 48 min, with positive reactions readily identifiable visually via a simple color change. Higher copy numbers could be detected in as little as 16 min. When applied to a total of 394 clinical specimens, the LAMP assay in comparison to a conventional TaqMan® based real-time polymerase chain reaction system demonstrated a sensitivity of 100% and a specificity of 98.9% with a ? coefficient of 0.942. The LAMP method represents a rapid, sensitive, and highly specific technique for the detection of N. meningitidis and has the potential to be used as a point-of-care molecular test and in resource-poor settings.
Resumo:
We report the detection of Voigt spectral line profiles of radio recombination lines (RRLs) toward Sagittarius B2(N) with the 100 m Green Bank Telescope (GBT). At radio wavelengths, astronomical spectra are highly populated with RRLs, which serve as ideal probes of the physical conditions in molecular cloud complexes. An analysis of the Hn alpha lines presented herein shows that RRLs of higher principal quantum number (n > 90) are generally divergent from their expected Gaussian profiles and, moreover, are well described by their respective Voigt profiles. This is in agreement with the theory that spectral lines experience pressure broadening as a result of electron collisions at lower radio frequencies. Given the inherent technical difficulties regarding the detection and profiling of true RRL wing spans and shapes, it is crucial that the observing instrumentation produce flat baselines as well as high-sensitivity, high-resolution data. The GBT has demonstrated its capabilities regarding all of these aspects, and we believe that future observations of RRL emission via the GBT will be crucial toward advancing our knowledge of the larger-scale extended structures of ionized gas in the interstellar medium (ISM).