937 resultados para Conocimiento de matemáticas para la enseñanza
Resumo:
Este reporte trata de una investigación cooperativa cuyo tema es la comparación de la enseñanza de la geometría en Chile y en Francia (proyecto ECOS-CONYCIT). Después de definir nuestra metodología por zooms sucesivos, presentamos las mayores diferencias que encontramos entre los dos países. Estas diferencias conciernen a los ámbitos siguientes: la concepción de la geometría, los aspectos de la actividad matemática puestos en evidencia, la organización del aprendizaje, la extensión de los programas, la importancia dada a las aplicaciones de matemáticas y a la modelación. Los trabajos de C.Houdement y A.Kuzniak sobre los paradigmas geométricos nos permiten analizar las concepciones de la geometría.
Resumo:
Las clases de matemáticas no debieran tener como objetivo fundamental el aprendizaje de contenidos (definiciones, teoremas, axiomas…) que posteriormente serán aplicados a la resolución de un gran listado de ejercicios y problemas propuestos por el profesor y que justificará el aprendizaje de dichos contenidos, sino que, por el contrario, debieran partir con un problema concreto y familiar para el alumno. Una vez planteado éste y discutido por todos, estudiantes y profesor, traerá como consecuencia la obligación de resolverlo y por tanto la necesidad del aprendizaje de las técnicas que son necesarias para ello y recurrir al uso de tecnología disponible. Es muy importante destacar que durante todo el proceso el alumno hace conjeturas que irá verificando en cada paso. Se dará cuenta que algunas de las conjeturas que hizo son correctas y que otras no lo son, es decir, cometerá errores y aciertos, en función de los cuales irá cimentando su aprendizaje. Pero, por sobre todo, debe aprender que “va al colegio a equivocarse”, pero que no debe quedarse en el error, que en la discusión con sus compañeros y el profesorado encontrará la(s) solucione(s), que es probable que más de una sirva, pero que también unas son mejores que otras, que en algunos casos hay una solución óptima, en definitiva irá “aprendiendo a aprender”. Se ilustra lo anterior planteando resolver un clásico problema de construcción de cajas utilizando como herramienta de aprendizaje el software DERIVE 5.
Resumo:
Para que el aprendizaje ocurra, es necesario que los estudiantes se unen momentos de exploración, al realizar experimentos contextualizados en el mundo físico, con momentos de reflexión. En este sentido, el objetivo de este taller es presentar proyectos de aprendizaje como una alternativa pedagógica para promover la construcción del conocimiento estadístico de los estudiantes. En primer lugar, vamos a abordar la forma de desarrollar proyectos de aprendizaje en la enseñanza de estadística. Para orientar las acciones futuras de los participantes, se presentarán las estrategias metodológicas que ya se aplican en la conducción del desarrollo de proyectos de aprendizaje en la enseñanza de la estadística en los cursos de licenciatura en diversas áreas del conocimiento en Brasil.
Resumo:
Esta propuesta metodológica, nace como producto de la tesis de maestría de uno de los ponentes, en ella se intenta mostrar una forma de enseñar las secciones cónicas en un ambiente didáctico que se basa en que el estudiante aprenda haciendo. Por ello, se presentan actividades para que el estudiante explore y descubra características de las figuras que él construirá y, en diálogo con sus compañeros y el docente, construya su propio conocimiento. Para lograr este proceso se empleó como referente teórico el modelo de Van-Hiele el cual se caracteriza al tener dos secciones, una de las cuales es descriptiva, en ella se observan niveles de razonamiento. La otra parte nos da a los maestros las pautas para que nuestros estudiantes avancen de un nivel a otro, estas pautas se conocen como fases de aprendizaje.
Resumo:
Los procedimientos, gráficos, operaciones y procesos en las matemáticas hacen necesaria la implementación de recursos didácticos que permitan facilitar el aprendizaje de los contenidos de ella. Por esto son indispensables en la enseñanza de las matemáticas como instrumentos de apoyo que favorecen el proceso de matematización y representación de ideas matemáticas. Esto es una gran dificultad para el niño con discapacidad visual ya que en la educación matemática hacen falta materiales didácticos adaptados lo cuales mejoren el ritmo de trabajo y rendimiento a la hora de aprender haciendo uso de una Didáctica Especial de la Matemática para ciegos que permita una adecuación de materiales pedagógicos e instrumental de trabajo para esta población.
Resumo:
En este artículo se obtiene un método de obtención de rectas tangentes a curvas polinómicas sin necesidad de conocer el cálculo de derivadas. Incluso no precisa conocimientos previos de trigonometría. El cálculo de máximos y mínimos es inmediato. El procedimiento que se presenta puede considerarse como una primera toma de contacto del estudiante, de manera inmediata, con los problemas con los que se va a encontrar posteriormente al estudiar el cálculo diferencial. Este método está pensado para incitar al alumno el interés por las derivadas.
Resumo:
El objetivo de este artículo es concienciarnos de la importancia de aprovechar los conocimientos de geometría que poseen nuestros alumnos para explicar el concepto de probabilidad. Queremos demostrar lo beneficioso que, desde un punto de vista didáctico, puede ser la unión de la geometría y la probabilidad
Resumo:
Hace ahora cinco años que comenzó a implantarse la educación secundaria obligatoria en algunos centros de diferentes lugares. Desde entonces, el número de estudiantes y de centros que se han incorporado a esta etapa educativa ha ido creciendo progresivamente. Tenemos ya alguna experiencia que nos permite hacer un primer balance de sus características más relevantes y sus efectos en relación con la enseñanza y el aprendizaje de las matemáticas y de las condiciones en las que se ha ido poniendo en marcha.
Resumo:
En el artículo se exponen dos métodos de resolución de inecuaciones. Se comparan desde varios puntos de vista y se comentan algunos aspectos del trabajo realizado a partir de 1983 en la enseñanza de dicho tópico en la facultad de ciencias de la Universidad Central de Venezuela.
Resumo:
Teniendo en cuenta que las dificultades de aprendizaje de conceptos que tienen los estudiantes se localizan en las mentes, las matemáticas y el mensaje, se debe realizar una revisión del curriculum encaminada a potenciar el aprendizaje comprensivo de los contenidos del cálculo.
Resumo:
Propuesta para un planteamiento de la Geometría en la Enseñanza Secundaria Obligatoria (12-16), siguiendo las directrices del Diseño Curricular Base.
Resumo:
En la actualidad la enseñanza de la estadística se realiza de forma gradual desde séptimo de E.G.B. hasta los primeros cursos universitarios, en donde existen asignaturas de edstadística aplicada en distintas licenciaturas: medicina, biología, farmacia, economía, psicología, ciencias de la educación, ingeniería, etc.
Resumo:
La calculadora electrónica es un excelente recurso didáctico que hace mucho más que las operaciones básicas. Usarla como “calculadora” nada más sería desperdiciar una oportunidad de hacer la matemática más atractiva para muchos estudiantes. Con ella es posible por ejemplo, experimentar con patrones numéricos, explorar relaciones funcionales, desarrollar conceptos y resolver problemas con datos reales.
Resumo:
En un proyecto de investigación finalizado, se diseñó un software de escritorio para la enseñanza y el aprendizaje del tema Resolución Numérica de Ecuaciones no Lineales, usando el paquete MatLab.
Resumo:
El objetivo es presentar el teorema de la función inversa y algunos de sus principales corolarios. Este teorema es central en el estudio del cálculo en varias variables, y tradicionalmente su presentación se hace de manera negligente en cursos que tienden a dar poco énfasis al análisis, lo cual puede no ser conveniente para estudiantes de las carreras de enseñanza de las matemáticas, matemática pura y aplicada, y carreras afines.