952 resultados para Chebyshev polynomial


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The empirical finding of an inverse U-shaped relationship between per capita income and pollution, the so-called Environmental Kuznets Curve (EKC), suggests that as countries experience economic growth, environmental deterioration decelerates and thus becomes less of an issue. Focusing on the prime example of carbon emissions, the present article provides a critical review of the new econometric techniques that have questioned the baseline polynomial specification in the EKC literature. We discuss issues related to the functional form, heterogeneity, “spurious” regressions and spatial dependence to address whether and to what extent the EKC can be observed. Despite these new approaches, there is still no clear-cut evidence supporting the existence of the EKC for carbon emissions. JEL classifications: C20; Q32; Q50; O13 Keywords: Environmental Kuznets Curve; Carbon emissions; Functional form; Heterogeneity; “Spurious” regressions; Spatial dependence.Residential satisfaction is often used as a barometer to assess the performance of public policy and programmes designed to raise individuals' well-being. However, the fact that responses elicited from residents might be biased by subjective, non-observable factors casts doubt on whether these responses can be taken as trustable indicators of the individuals' housing situation. Emotional factors such as aspirations or expectations might affect individuals' cognitions of their true residential situation. To disentangle this puzzle, we investigated whether identical residential attributes can be perceived differently depending on tenure status. Our results indicate that tenure status is crucial not only in determining the level of housing satisfaction, but also regarding how dwellers perceive their housing characteristics. Keywords: Housing satisfaction, subjective well-being, homeownership. JEL classification: D1, R2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Excessive exposure to solar ultraviolet (UV) is the main cause of skin cancer. Specific prevention should be further developed to target overexposed or highly vulnerable populations. A better characterisation of anatomical UV exposure patterns is however needed for specific prevention. To develop a regression model for predicting the UV exposure ratio (ER, ratio between the anatomical dose and the corresponding ground level dose) for each body site without requiring individual measurements. A 3D numeric model (SimUVEx) was used to compute ER for various body sites and postures. A multiple fractional polynomial regression analysis was performed to identify predictors of ER. The regression model used simulation data and its performance was tested on an independent data set. Two input variables were sufficient to explain ER: the cosine of the maximal daily solar zenith angle and the fraction of the sky visible from the body site. The regression model was in good agreement with the simulated data ER (R(2)=0.988). Relative errors up to +20% and -10% were found in daily doses predictions, whereas an average relative error of only 2.4% (-0.03% to 5.4%) was found in yearly dose predictions. The regression model predicts accurately ER and UV doses on the basis of readily available data such as global UV erythemal irradiance measured at ground surface stations or inferred from satellite information. It renders the development of exposure data on a wide temporal and geographical scale possible and opens broad perspectives for epidemiological studies and skin cancer prevention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we unify, simplify, and extend previous work on the evolutionary dynamics of symmetric N-player matrix games with two pure strategies. In such games, gains from switching strategies depend, in general, on how many other individuals in the group play a given strategy. As a consequence, the gain function determining the gradient of selection can be a polynomial of degree N-1. In order to deal with the intricacy of the resulting evolutionary dynamics, we make use of the theory of polynomials in Bernstein form. This theory implies a tight link between the sign pattern of the gains from switching on the one hand and the number and stability of the rest points of the replicator dynamics on the other hand. While this relationship is a general one, it is most informative if gains from switching have at most two sign changes, as is the case for most multi-player matrix games considered in the literature. We demonstrate that previous results for public goods games are easily recovered and extended using this observation. Further examples illustrate how focusing on the sign pattern of the gains from switching obviates the need for a more involved analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Management of blood pressure (BP) in acute ischemic stroke is controversial. The present study aims to explore the association between baseline BP levels and BP change and outcome in the overall stroke population and in specific subgroups with regard to the presence of arterial hypertensive disease and prior antihypertensive treatment. METHODS: All patients registered in the Acute STroke Registry and Analysis of Lausanne (ASTRAL) between 2003 and 2009 were analyzed. Unfavorable outcome was defined as modified Rankin score more than 2. A local polynomial surface algorithm was used to assess the effect of BP values on outcome in the overall population and in predefined subgroups. RESULTS: Up to a certain point, as initial BP was increasing, optimal outcome was seen with a progressively more substantial BP decrease over the next 24-48 h. Patients without hypertensive disease and an initially low BP seemed to benefit from an increase of BP. In patients with hypertensive disease, initial BP and its subsequent changes seemed to have less influence on clinical outcome. Patients who were previously treated with antihypertensives did not tolerate initially low BPs well. CONCLUSION: Optimal outcome in acute ischemic stroke may be determined not only by initial BP levels but also by the direction and magnitude of associated BP change over the first 24-48 h.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present paper, we study the geometric discrepancy with respect to families of rotated rectangles. The well-known extremal cases are the axis-parallel rectangles (logarithmic discrepancy) and rectangles rotated in all possible directions (polynomial discrepancy). We study several intermediate situations: lacunary sequences of directions, lacunary sets of finite order, and sets with small Minkowski dimension. In each of these cases, extensions of a lemma due to Davenport allow us to construct appropriate rotations of the integer lattice which yield small discrepancy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When using a polynomial approximating function the most contentious aspect of the Heat Balance Integral Method is the choice of power of the highest order term. In this paper we employ a method recently developed for thermal problems, where the exponent is determined during the solution process, to analyse Stefan problems. This is achieved by minimising an error function. The solution requires no knowledge of an exact solution and generally produces significantly better results than all previous HBI models. The method is illustrated by first applying it to standard thermal problems. A Stefan problem with an analytical solution is then discussed and results compared to the approximate solution. An ablation problem is also analysed and results compared against a numerical solution. In both examples the agreement is excellent. A Stefan problem where the boundary temperature increases exponentially is analysed. This highlights the difficulties that can be encountered with a time dependent boundary condition. Finally, melting with a time-dependent flux is briefly analysed without applying analytical or numerical results to assess the accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present two new stabilized high-resolution numerical methods for the convection–diffusion–reaction (CDR) and the Helmholtz equations respectively. The work embarks upon a priori analysis of some consistency recovery procedures for some stabilization methods belonging to the Petrov–Galerkin framework. It was found that the use of some standard practices (e.g. M-Matrices theory) for the design of essentially non-oscillatory numerical methods is not feasible when consistency recovery methods are employed. Hence, with respect to convective stabilization, such recovery methods are not preferred. Next, we present the design of a high-resolution Petrov–Galerkin (HRPG) method for the 1D CDR problem. The problem is studied from a fresh point of view, including practical implications on the formulation of the maximum principle, M-Matrices theory, monotonicity and total variation diminishing (TVD) finite volume schemes. The current method is next in line to earlier methods that may be viewed as an upwinding plus a discontinuity-capturing operator. Finally, some remarks are made on the extension of the HRPG method to multidimensions. Next, we present a new numerical scheme for the Helmholtz equation resulting in quasi-exact solutions. The focus is on the approximation of the solution to the Helmholtz equation in the interior of the domain using compact stencils. Piecewise linear/bilinear polynomial interpolation are considered on a structured mesh/grid. The only a priori requirement is to provide a mesh/grid resolution of at least eight elements per wavelength. No stabilization parameters are involved in the definition of the scheme. The scheme consists of taking the average of the equation stencils obtained by the standard Galerkin finite element method and the classical finite difference method. Dispersion analysis in 1D and 2D illustrate the quasi-exact properties of this scheme. Finally, some remarks are made on the extension of the scheme to unstructured meshes by designing a method within the Petrov–Galerkin framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We extend the basic concepts of Street's formal theory of monads from the setting of 2-categories to that of double categories. In particular, we introduce the double category Mnd(C) of monads in a double category C and dene what it means for a double category to admit the construction of free monads. Our main theorem shows that, under some mild conditions, a double category that is a framed bicategory admits the construction of free monads if its horizontal 2-category does. We apply this result to obtain double adjunctions which extend the adjunction between graphs and categories and the adjunction between polynomial endofunctors and polynomial monads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Donada una aplicació racional en una varietat complexa, Bellon i Viallet van definit l’entropia algebraica d’aquesta aplicació i van provar que aquest valor és un invariant biracional. Un invariant biracional equivalent és el grau asimptòtic, grau dinàmic o complexitat, definit per Boukraa i Maillard. Aquesta noció és propera a la complexitat definida per Arnold. Conjecturalment, el grau asimptòtic satisfà una recurrència lineal amb coeficients enters. Aquesta conjectura ha estat provada en el cas polinòmic en el pla afí complex per Favre i Jonsson i resta oberta en per al cas projectiu global i per al cas local. L’estudi de l’arbre valoratiu de Favre i Jonsson ha resultat clau per resoldre la conjectura en el cas polinòmic en el pla afí complex. El beneficiari ha estudiat l’arbre valoratiu global de Favre i Jonsson i ha reinterpretat algunes nocions i resultats des d’un punt de vista més geomètric. Així mateix, ha estudiat la demostració de la conjectura de Bellon – Viallet en el cas polinòmic en el pla afí complex com a primer pas per trobar una demostració en el cas local i projectiu global en estudis futurs. El projecte inclou un estudi detallat de l'arbre valoratiu global des d'un punt de vista geomètric i els primers passos de la demostració de la conjectura de Bellon - Viallet en el cas polinòmic en el pla afí complex que van efectuar Favre i Jonsson.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Donada una aplicació racional en una varietat complexa, Bellon i Viallet van definit l’entropia algebraica d’aquesta aplicació i van provar que aquest valor és un invariant biracional. Un invariant biracional equivalent és el grau asimptòtic, grau dinàmic o complexitat, definit per Boukraa i Maillard. Aquesta noció és propera a la complexitat definida per Arnold. Conjecturalment, el grau asimptòtic satisfà una recurrència lineal amb coeficients enters. Aquesta conjectura ha estat provada en el cas polinòmic en el pla afí complex per Favre i Jonsson i resta oberta en per al cas projectiu global i per al cas local. L’estudi de l’arbre valoratiu de Favre i Jonsson ha resultat clau per resoldre la conjectura en el cas polinòmic en el pla afí complex. El beneficiari ha estudiat l’arbre valoratiu global de Favre i Jonsson i ha reinterpretat algunes nocions i resultats des d’un punt de vista més geomètric. Així mateix, ha estudiat la demostració de la conjectura de Bellon – Viallet en el cas polinòmic en el pla afí complex com a primer pas per trobar una demostració en el cas local i projectiu global en estudis futurs. El projecte inclou un estudi detallat de l'arbre valoratiu global des d'un punt de vista geomètric i els primers passos de la demostració de la conjectura de Bellon - Viallet en el cas polinòmic en el pla afí complex que van efectuar Favre i Jonsson.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the two main drawbacks of the heat balance integral methods are examined. Firstly we investigate the choice of approximating function. For a standard polynomial form it is shown that combining the Heat Balance and Refined Integral methods to determine the power of the highest order term will either lead to the same, or more often, greatly improved accuracy on standard methods. Secondly we examine thermal problems with a time-dependent boundary condition. In doing so we develop a logarithmic approximating function. This new function allows us to model moving peaks in the temperature profile, a feature that previous heat balance methods cannot capture. If the boundary temperature varies so that at some time t & 0 it equals the far-field temperature, then standard methods predict that the temperature is everywhere at this constant value. The new method predicts the correct behaviour. It is also shown that this function provides even more accurate results, when coupled with the new CIM, than the polynomial profile. Analysis primarily focuses on a specified constant boundary temperature and is then extended to constant flux, Newton cooling and time dependent boundary conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We give the first systematic study of strong isomorphism reductions, a notion of reduction more appropriate than polynomial time reduction when, for example, comparing the computational complexity of the isomorphim problem for different classes of structures. We show that the partial ordering of its degrees is quite rich. We analyze its relationship to a further type of reduction between classes of structures based on purely comparing for every n the number of nonisomorphic structures of cardinality at most n in both classes. Furthermore, in a more general setting we address the question of the existence of a maximal element in the partial ordering of the degrees.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assume that the problem Qo is not solvable in polynomial time. For theories T containing a sufficiently rich part of true arithmetic we characterize T U {ConT} as the minimal extension of T proving for some algorithm that it decides Qo as fast as any algorithm B with the property that T proves that B decides Qo. Here, ConT claims the consistency of T. Moreover, we characterize problems with an optimal algorithm in terms of arithmetical theories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a seminal paper [10], Weitz gave a deterministic fully polynomial approximation scheme for counting exponentially weighted independent sets (which is the same as approximating the partition function of the hard-core model from statistical physics) in graphs of degree at most d, up to the critical activity for the uniqueness of the Gibbs measure on the innite d-regular tree. ore recently Sly [8] (see also [1]) showed that this is optimal in the sense that if here is an FPRAS for the hard-core partition function on graphs of maximum egree d for activities larger than the critical activity on the innite d-regular ree then NP = RP. In this paper we extend Weitz's approach to derive a deterministic fully polynomial approximation scheme for the partition function of general two-state anti-ferromagnetic spin systems on graphs of maximum degree d, up to the corresponding critical point on the d-regular tree. The main ingredient of our result is a proof that for two-state anti-ferromagnetic spin systems on the d-regular tree, weak spatial mixing implies strong spatial mixing. his in turn uses a message-decay argument which extends a similar approach proposed recently for the hard-core model by Restrepo et al [7] to the case of general two-state anti-ferromagnetic spin systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tant el medi transmissor com els equips d'enregistrament o reproducció de so introdueixen components de soroll d'alta freqüència als senyals. En aquest treball de final de carrera (TFC), s'ha dissenyat i implementat un sistema de filtrat d'àudio encaminat a filtrar aquestes components d'alta freqüència. Donat que l'oïda humana no pot percebre sons de més de 20 kHz, s'ha considerat aquest límit com a freqüència màxima a mantenir en la senyal.S'ha començat estudiant el senyal problema a través del seu espectre de freqüències simulat mitjançant la transformada discreta de Fourier (DFT, en anglès). Una vegada identificades les components d'alta freqüència a atenuar, s'han estudiat les diferents opcions de filtre passabaix.Inicialment, s'ha valorat la possibilitat del disseny de filtres analògics de Butterworth o Chebyshev, o de filtres digitals de tipus IIR (Infinite Impulse Response) basats en els primers. Tanmateix, malgrat assolir les especificacions en magnitud, mitjançant aquest filtres no s'obté una fase lineal en la banda de pas. Per això, s'ha realitzat un disseny de filtre digital tipus FIR (Finite Infinite Response) que compleix estrictament amb les especificacions i presenta una fase lineal en la banda de pas. S'ha simulat el comportament d'aquest filtre amb el senyal problema per tal d'assegurar el seu correcte funcionament.A continuació, s'ha implementat aquest últim disseny en llenguatge C i compilat per un microcontrolador de l'empresa Microchip. S'han realitzat proves de simulació mitjançant Stimulus del programa MPLAB. En definitiva, s'ha dissenyat un filtre passabaix de tipus FIR per acondicionar una senyal d'àudio que posteriorment s'ha implementat en un microcontrolador de Microchip.