1000 resultados para Cephalosporin C
Resumo:
A method for the delipidation of egg yolk plasma using phospholipase-C, n-heptane, and 1-butanol has been described. An aggregating protein fraction and a soluble protein fraction were separated by the action of phospholipase-C. The aggregating protein fraction freed of most of the lipids by treatment with n-heptane and 1-butanol was shown to be the apolipoproteins of yolk plasma, whereas the soluble proteins were identified as the livetins. Carbohydrate and the N-terminal amino acid analysis of these protein fractions are reported. A comparison of these protein fractions with the corresponding fractions obtained by formic acid delipidation of yolk plasma has been made. The gelation of yolk plasma by the action of phospholipase-C has been interpreted as an aggregation of lipoproteins caused by ionic interactions. The role of lecithin in maintaining the structural integrity of lipoproteins has been discussed.
Resumo:
This article presents the first measurement of the ratio of branching fractions B(Λb0→Λc+μ-ν̅ μ)/B(Λb0→Λc+π-). Measurements in two control samples using the same technique B(B̅ 0→D+μ-ν̅ μ)/B(B̅ 0→D+π-) and B(B̅ 0→D*(2010)+μ-ν̅ μ)/B(B̅ 0→D*(2010)+π-) are also reported. The analysis uses data from an integrated luminosity of approximately 172 pb-1 of pp̅ collisions at √s=1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. The relative branching fractions are measured to be B(Λb0→Λc+μ-ν̅ μ)/B(Λb0→Λc+π-)=16.6±3.0(stat)±1.0(syst)+2.6/-3.4(PDG)±0.3(EBR), B(B̅ 0→D+μ-ν̅ μ)/B(B̅ 0→D+π-)= 9.9±1.0(stat)±0.6(syst)±0.4(PDG)±0.5(EBR), and B(B̅ 0→D*(2010)+μ-ν̅ μ)/B(B̅ 0→D*(2010)+π-)=16.5±2.3(stat)± 0.6(syst)±0.5(PDG)±0.8(EBR). The uncertainties are from statistics (stat), internal systematics (syst), world averages of measurements published by the Particle Data Group or subsidiary measurements in this analysis (PDG), and unmeasured branching fractions estimated from theory (EBR), respectively. This article also presents measurements of the branching fractions of four new Λb0 semileptonic decays: Λb0→Λc(2595)+μ-ν̅ μ, Λb0→Λc(2625)+μ-ν̅ μ, Λb0→Σc(2455)0π+μ-ν̅ μ, and Λb0→Σc(2455)++π-μ-ν̅ μ, relative to the branching fraction of the Λb0→Λc+μ-ν̅ μ decay. Finally, the transverse-momentum distribution of Λb0 baryons produced in pp̅ collisions is measured and found to be significantly different from that of B̅ 0 mesons, which results in a modification in the production cross-section ratio σΛb0/σB̅ 0 with respect to the CDF I measurement.
Resumo:
The ability of the peripherally associated membrane protein cytochrome c (cyt c) to bind phospholipids in vitro was studied using fluorescence spectroscopy and large unilamellar liposomes. Previous work has shown that cyt c can bind phospholipids using two distinct mecha- nisms and sites, the A-site and the C-site. This binding is mediated by electrostatic or hydrophobic interactions, respectively. Here, we focus on the mechanism underlying these interactions. A chemically modified cyt c mutant Nle91 was used to study the ATP-binding site, which is located near the evolutionarily invariant Arg 91 on the protein surface. This site was also demonstrated to mediate phospholipid binding, possibly by functioning as a phospholipid binding site. Circular dichroism spectroscopy, time resolved fluorescence spectroscopy of zinc- porphyrin modified [Zn2+-heme] cyt c and liposome binding studies of the Nle91 mutant were used to demonstrate that ATP induces a conformational change in membrane- bound cyt c. The ATP-induced conformational changes were mediated by Arg 91 and were most pronounced in cyt c bound to phospholipids via the C-site. It has been previously reported that the hydrophobic interaction between phospho- lipids and cyt c (C-site) includes the binding of a phospholipid acyl chain inside the protein. In this mechanism, which is known as extended phospholipid anchorage, the sn-2 acyl chain of a membrane phospholipid protrudes out of the membrane surface and is able to bind in a hydrophobic cavity in cyt c. Direct evidence for this type of bind- ing mechanism was obtained by studying cyt c/lipid interaction using fluorescent [Zn2+- heme] cyt c and fluorescence quenching of brominated fatty acids and phospholipids. Under certain conditions, cyt c can form fibrillar protein-lipid aggregates with neg- atively charged phospholipids. These aggregates resemble amyloid fibrils, which are involved in the pathogenesis of many diseases. Congo red staining of these fibers con- firmed the presence of amyloid structures. A set of phospholipid-binding proteins was also found to form similar aggregates, suggesting that phospholipid-induced amyloid formation could be a general mechanism of amyloidogenesis.
Resumo:
Statistical learning algorithms provide a viable framework for geotechnical engineering modeling. This paper describes two statistical learning algorithms applied for site characterization modeling based on standard penetration test (SPT) data. More than 2700 field SPT values (N) have been collected from 766 boreholes spread over an area of 220 sqkm area in Bangalore. To get N corrected value (N,), N values have been corrected (Ne) for different parameters such as overburden stress, size of borehole, type of sampler, length of connecting rod, etc. In three-dimensional site characterization model, the function N-c=N-c (X, Y, Z), where X, Y and Z are the coordinates of a point corresponding to N, value, is to be approximated in which N, value at any half-space point in Bangalore can be determined. The first algorithm uses least-square support vector machine (LSSVM), which is related to aridge regression type of support vector machine. The second algorithm uses relevance vector machine (RVM), which combines the strengths of kernel-based methods and Bayesian theory to establish the relationships between a set of input vectors and a desired output. The paper also presents the comparative study between the developed LSSVM and RVM model for site characterization. Copyright (C) 2009 John Wiley & Sons,Ltd.
Resumo:
The Raman spectrum of C-deuterated γ-glycine (NH3+CD2COO-) in the crystal powder form was taken using λ 2536·5 excitation. 26 Raman lines were recorded. Of these, eight lines are attributed to the external oscillations and eighteen Raman lines to the internal oscillations. Proper assignments are given to the observed frequencies.
Resumo:
A correlation of the infrared spectra of thiocarbonyl derivatives based on the literature data has been carried out. Assignments have also been made in some new systems. Since simple alkyl thioketones are unstable, we have prepared thiofenchone in order to obtain a reference C=S stretching frequency. The C=S stretching frequency in thiofenchone has been found around 1180 cm−1 which is in fair agreement with the value calculated for thioformaldehyde. In the case of the thiocarbonyl derivatives where the C=S group is linked to elements other than nitrogen, the stretching frequency is generally found in the region 1025–1225 cm−1. Strong vibrational coupling is operative in the case of the nitrogen containing thiocarbonyl derivatives and three bands seem to consistently appear in the regions 1395–1570 cm−1, 1260–1420 cm−1, 940–1140 cm−1 due to the mixed vibrations. These bands, which may be tentatively designated as the “-N-C=S I, II and III bands”, could be useful in qualitative analysis.
Resumo:
Effects of non-polar, polar and proton-donating solvents on the n → π* transitions of C=O, C=S, NO2 and N=N groups have been investigated. The shifts of the absorption maxima in non-polar and polar solvents have been related to the electrostatic interactions between solute and solvent molecules, by employing the theory of McRAE. In solvents which can donate protons the solvent shifts are mainly determined by solute-solvent hydrogen bonding. Isobestic points have been found in the n → π* bonds of ethylenetrithio-carbonate in heptane-alcohol and heptane-chloroform solvent systems, indicating the existence of equilibria between the hydrogen bonded and the free species of the solute. Among the different proton-donating solvents studied water produces the largest blue-shifts. The blue-shifts in alcohols decrease in the order 2,2,2-trifluoroethanol, methanol, ethanol, isopropanol and t-butanol, the blue-shift in trifluoroethanol being nearly equal to that in water. This trend is exactly opposite to that for the self-association of alcohols. It is suggested that electron-withdrawing groups not merely decrease the extent of self-association of alcohols, but also increase the ability to donate hydrogen bonds. The approximate hydrogen-bond energies for several donor-acceptor systems have been estimated. In a series of aliphatio ketones and nitro compounds studied, the blue-shifts and consequently the hydrogen bond energies decrease with the decrease in the electron-withdrawing power of the alkyl groups. It is felt that electron-withdrawing groups render the chromophores better proton acceptors, and the alcohols better donors. A linear relationship between n → π* transition frequency and the infrared frequency of ethylenetrithiocarbonate has been found. It is concluded that stabilization of the electronic ground states of solute molecules by electrostatic and/or hydrogen-bond interactions determines the solvent shifts.
Resumo:
IT was initially suggested that vitamin A-deficiency leads to an interference in the biosynthesis of ascorbic acid, because depletion of vitamin A was found to cause a fall in the tissue-levels of ascorbate and diminished urinary ascorbic acid excretion in animals1-3. Mapson4, however, concluded that lowered ascorbic acid-levels in vitamin A-deficient rats is due to inanition only, because he was able to show that following chloretone treatment vitamin A-deficient and pair-fed vitamin A normal rats excrete comparable amounts of ascorbic acid in their urine and that restriction of food intake reduces the urinary ascorbate even in the chloretone-treated normal rats. Results of our preliminary experiments reported here clearly indicate that the synthesis of ascorbic acid in rats is markedly reduced during vitamin A-deficiency.
Resumo:
A careful comparison of the distribution in the (R, θ)-plane of all NH ... O hydrogen bonds with that for bonds between neutral NH and neutral C=O groups indicated that the latter has a larger mean R and a wider range of θ and that the distribution was also broader than for the average case. Therefore, the potential function developed earlier for an average NH ... O hydrogen bond was modified to suit the peptide case. A three-parameter expression of the form {Mathematical expression}, with △ = R - Rmin, was found to be satisfactory. By comparing the theoretically expected distribution in R and θ with observed data (although limited), the best values were found to be p1 = 25, p3 = - 2 and q1 = 1 × 10-3, with Rmin = 2·95 Å and Vmin = - 4·5 kcal/mole. The procedure for obtaining a smooth transition from Vhb to the non-bonded potential Vnb for large R and θ is described, along with a flow chart useful for programming the formulae. Calculated values of ΔH, the enthalpy of formation of the hydrogen bond, using this function are in reasonable agreement with observation. When the atoms involved in the hydrogen bond occur in a five-membered ring as in the sequence[Figure not available: see fulltext.] a different formula for the potential function is needed, which is of the form Vhb = Vmin +p1△2 +q1x2 where x = θ - 50° for θ ≥ 50°, with p1 = 15, q1 = 0·002, Rmin = 2· Å and Vmin = - 2·5 kcal/mole. © 1971 Indian Academy of Sciences.
Resumo:
Acute heart failure (AHF) is a complex syndrome associated with exceptionally high mortality. Still, characteristics and prognostic factors of contemporary AHF patients have been inadequately studied. Kidney function has emerged as a very powerful prognostic risk factor in cardiovascular disease. This is believed to be the consequence of an interaction between the heart and kidneys, also termed the cardiorenal syndrome, the mechanisms of which are not fully understood. Renal insufficiency is common in heart failure and of particular interest for predicting outcome in AHF. Cystatin C (CysC) is a marker of glomerular filtration rate with properties making it a prospective alternative to the currently used measure creatinine for assessment of renal function. The aim of this thesis is to characterize a representative cohort of patients hospitalized for AHF and to identify risk factors for poor outcome in AHF. In particular, the role of CysC as a marker of renal function is evaluated, including examination of the value of CysC as a predictor of mortality in AHF. The FINN-AKVA (Finnish Acute Heart Failure) study is a national prospective multicenter study conducted to investigate the clinical presentation, aetiology and treatment of, as well as concomitant diseases and outcome in, AHF. Patients hospitalized for AHF were enrolled in the FINN-AKVA study, and mortality was followed for 12 months. The mean age of patients with AHF is 75 years and they frequently have both cardiovascular and non-cardiovascular co-morbidities. The mortality after hospitalization for AHF is high, rising to 27% by 12 months. The present study shows that renal dysfunction is very common in AHF. CysC detects impaired renal function in forty percent of patients. Renal function, measured by CysC, is one of the strongest predictors of mortality independently of other prognostic risk markers, such as age, gender, co-morbidities and systolic blood pressure on admission. Moreover, in patients with normal creatinine values, elevated CysC is associated with a marked increase in mortality. Acute kidney injury, defined as an increase in CysC within 48 hours of hospital admission, occurs in a significant proportion of patients and is associated with increased short- and mid-term mortality. The results suggest that CysC can be used for risk stratification in AHF. Markers of inflammation are elevated both in heart failure and in chronic kidney disease, and inflammation is one of the mechanisms thought to mediate heart-kidney interactions in the cardiorenal syndrome. Inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) correlate very differently to markers of cardiac stress and renal function. In particular, TNF-α showed a robust correlation to CysC, but was not associated with levels of NT-proBNP, a marker of hemodynamic cardiac stress. Compared to CysC, the inflammatory markers were not strongly related to mortality in AHF. In conclusion, patients with AHF are elderly with multiple co-morbidities, and renal dysfunction is very common. CysC demonstrates good diagnostic properties both in identifying impaired renal function and acute kidney injury in patients with AHF. CysC, as a measure of renal function, is also a powerful prognostic marker in AHF. CysC shows promise as a marker for assessment of kidney function and risk stratification in patients hospitalized for AHF.
Resumo:
An analysis of eccentrically loaded short reinforced concrete columns using a variable failure strain criterion is presented. The method dispenses with the usual procedure of assuming a fixed value for the ultimate strain in concrete. The analysis is based on the use of a simple, single equation for the complete stress-strain curve of concrete and the adoption of a process of maximisation of moment with respect to extreme fibre concrete compressive strain. Columns of rectangular section and loaded eccentrically along one axis only are considered in this paper. A good agreement is observed between the theoretical and experimental values of some test results.
Resumo:
Background: Antioxidants might protect against oxidative stress, which has been suggested as a cause of aging. Methods: The ATBC Study recruited males aged 50-69 years who smoked at least 5 cigarettes per day at the baseline. The current study was restricted to participants who were followed up past the age of 65. Deaths were identified in the National Death Registry (1445 deaths). We constructed Kaplan-Meier survival curves for all participants, and for four subgroups defined by dietary vitamin C intake and level of smoking. We also constructed Cox regression models allowing a different vitamin E effect for low and high age ranges. Results: Among all 10,837 participants, vitamin E had no effect on those who were 65 to 70 years old, but reduced mortality by 24% when participants were 71 or older. Among 2284 men with dietary vitamin C intakes above the median who smoked less than a pack of cigarettes per day, vitamin E extended life-span by two years at the upper limit of the follow-up age span. In this subgroup, the survival curves of vitamin E and no-vitamin E participants diverged at 71 years. In the other three subgroups covering 80% of the participants, vitamin E did not affect mortality. Conclusions: This is the first study to strongly indicate that protection against oxidative stress can increase the life expectancy of some initially healthy population groups. Nevertheless, the lack of effect in 80% of this male cohort shows that vitamin E is no panacea for extending life expectancy.
Resumo:
Stress-strain characteristics of concrete confined in steel binders have been determined. A new factor “confinement index” has been introduced for a quantitative measure of the confinement and using these results a “stress-block” has been developed. Tests have been made on simply supported reinforced concrete beams with spiral binder confinement and analysed on the basis of the proposed stress-block. Tests have also been made oon reinforced concrete portal frames and continuous beams with spiral binder confinement at sections of possible plastic hinge formation. An analysis of these tests indicates that a full redistribution of moments has taken place at ultimate.