958 resultados para ACID ETCHING TIME
Resumo:
Sugarcane bagasse was pretreated with diluted sulfuric acid to obtain sugarcane bagasse hemicellulosic hydrolysate (SBHH). Experiments were conducted in laboratory and semi-pilot reactors to optimize the xylose recovery and to reduce the generation of sugar degradation products, as furfural and 5-hydroxy-methylfurfural (HMF). The hydrolysis scale-up procedure was based on the H-Factor, that combines temperature and residence time and employs the Arrhenius equation to model the sulfuric acid concentration (100 mg(acid)/g(dm)) and activation energy (109 kJ/mol). This procedure allowed the mathematical estimation of the results through simulation of the conditions prevailing in the reactors with different designs. The SBHH obtained from different reactors but under the same H-Factor of 5.45 +/- 0.15 reached similar xylose yield (approximately 74%) and low concentration of sugar degradation products, as furfural (0.082 g/L) and HMF (0.0071 g/L). Also, the highest lignin degradation products (phenolic compounds) were rho-coumarilic acid (0.15 g/L) followed by ferulic acid (0.12 g/L) and gallic acid (0.035 g/L). The highest concentration of ions referred to S (3433.6 mg/L), Fe (554.4 mg/L), K (103.9 mg/L), The H-Factor could be used without dramatically altering the xylose and HMF/furfural levels. Therefore, we could assume that H-Factor was directly useful in the scale-up of the hemicellulosic hydrolysate production. (C) 2009 Published by Elsevier Ltd.
Resumo:
Response surface methodology was used to evaluate optimal time, temperature and oxalic acid concentration for simultaneous saccharification and fermentation (SSF) of corncob particles by Pichia stipitis CBS 6054. Fifteen different conditions for pretreatment were examined in a 2(3) full factorial design with six axial points. Temperatures ranged from 132 to 180 degrees C, time from 10 to 90 min and oxalic acid loadings from 0.01 to 0.038 g/g solids. Separate maxima were found for enzymatic saccharification and hemicellulose fermentation, respectively, with the condition for maximum saccharification being significantly more severe. Ethanol production was affected by reaction temperature more than by oxalic acid and reaction time over the ranges examined. The effect of reaction temperature was significant at a 95% confidence level in its effect on ethanol production. Oxalic acid and reaction time were statistically significant at the 90% level. The highest ethanol concentration (20 g/l) was obtained after 48 h with an ethanol volumetric production rate of 0.42 g ethanol l(-1) h(-1). The ethanol yield after SSF with P. stipitis was significantly higher than predicted by sequential saccharification and fermentation of substrate pretreated under the same condition. This was attributed to the secretion of beta-glucosidase by P. stipitis. During SSF, free extracellular beta-glucosidase activity was 1.30 pNPG U/g with P. stipitis, while saccharification without the yeast was 0.66 pNPG U/g. Published by Elsevier Ltd.
Resumo:
The removal of sulfate and organic matter was assessed in an ASBR, which treated wastewater containing 500 mg COD L(-1) (3 g COD L(-1) d(-1)) in 8 h-cycles at 30 degrees C. The wastewater was enriched with sulfate at [COD/SO(4)(2-]) ratios of 1.34, 0.67 and 0.34 (8.8,4.5 and 2.2 gSO(4)(2-) L(-1) d(-1)). For each COD/[SO(4)(2-)] ratio fill times used were: 10 min (batch), 3 and 6 h (fed-batch), achieving sulfate reduction of 30%, 72% and 72% (COD/[SO(4)(2-)] of 1.34); 25%, 58% and 55% (COD/[SO(4)(2-)] of 0.67) and 23%, 37% and 27% (COD/[SO(4)(2-)] of 0.34), respectively, and organic matter removal of 87%, 68% and 80% (COD/[SO(4)(2-)] of 1.34); 78%, 75% and 69% (COD/[SO(4)(2-)] of 0.67) and 85%, 84% and 83% (COD/[SO(4)(2-)] of 0.34), respectively. The results showed that fed-batch operation improved sulfate reduction, whereas organic matter removals were similar for batch and fed-batch operation. In addition, increase in sulfate loading in the fed-batch operation improved organic matter removal. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to evaluate the effects of dietary addition of ground oilseed sources on the quality, fatty acid profile, and CLA content of meat from zebu steers. Thirty-one zebu steers with an initial average age of 23 mo and an initial BW of 365 kg were used in this study. The experimental period was 84 d, which was preceded by an adaption period of 28 d. The diet was provided ad libitum with a forage: concentrate ratio of 40:60. Corn silage was used as the forage source. Four different concentrates were formulated for each treatment: without additional lipids (control) or with ground soybeans (SB), ground cottonseed (CS), or ground linseed (LS). The SB, CS, and LS diets were formulated to have 6.5% ether extract on a total dietary DM basis. The experiment was set up as a completely randomized design. After slaughter, samples were taken from the longissimus thoracis muscle for the measurement of fatty acid concentration and the evaluation of meat quality. The luminosity index was greater in the control and LS diets (P < 0.01). The greatest percentages of myristic acid (C14:0), palmitic acid (C16:0), trans octadecenoic acid (C18:1 trans-10, trans-11, or trans-12), and SFA in the subcutaneous fat were observed in the CS treatment (P < 0.01). Moreover, the least percentages of oleic acid (C18:1 cis-9) and total unsaturated fatty acids in the subcutaneous fat were observed in the CS diet (P < 0.01). The meat linoleic acid and a-linolenic acid percentages were greatest in the SB and LS treatments, respectively (P < 0.001). The unsaturated fatty acid: SFA ratio was smallest for the CS diet (P < 0.01). A gradual increase in oxidation was observed as a function of storage time; however, the diets did not affect the rancidity of the meat (P > 0.05). The fatty acid profile of subcutaneous fat was impaired by the addition of CS. Supplying ground oilseeds did not increase the content of CLA in the meat.
Resumo:
Clavulanic acid (CA) is a beta-lactam antibiotic that alone exhibits only weak antibacterial activity, but is a potent inhibitor of beta-lactamases enzymes. For this reason it is used as a therapeutic in conjunction with penicillins and cephalosporins. However, it is a well-known fact that it is unstable not only during its production phase, but also during downstream processing. Therefore, the main objective of this study was the evaluation of CA long-term stability under different conditions of pH and temperature, in the presence of variable levels of different salts, so as to suggest the best conditions to perform its simultaneous production and recovery by two-phase polymer/salt liquid-liquid extractive fermentation. To this purpose, the CA stability was investigated at different values of pH (4.0-8.0) and temperature (20-45 degrees C), and the best conditions were met at a pH 6.0-7.2 and 20 degrees C. Its stability was also investigated at 30 degrees C in the presence of NaCl, Na(2)SO(4), CaCl(2) and MgSO(4) at concentrations of 0.1 and 0.5 M in Mcllvaine buffer (pH 6.5). All salts led to increased CA instability with respect to the buffer alone, and this effect decreased in following sequence: Na(2)SO(4) > MgSO(4) > CaCl(2) > NaCl. Kinetic and thermodynamic parameters of CA degradation were calculated adopting a new model that took into consideration the equilibrium between the active and a reversibly inactivated form of CA after long-time degradation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The main objectives of the present study were (a) to study the effects of the different combinations of Lactobacillus delbrueckii subsp. bulgaricus (Lb), Lactobacillus acidophilus (La), Lactobacillus rhamnosus (Lr), and Bifidobacterium animalis subsp. lactis (BI) in co-culture with Streptococcus thermophilus (St) on the rate of acid development in milk and milk-whey mixture, and (b) the effect of the level of the total solids of the different bases on the acidification profile and viability of potential health-promoting microorganisms. The co-culture of St-Lr showed the lowest values V(max) in all bases; while the co-culture St-Bl had high t(Vmax) in milk and whey bases (12 and 10 g/100 g, respectively). Co-cultures St-La and St-Lb reached V(max) at pH 5.5, while St-Lr and St-Bl at pH 5.91. Fermentation time to reach pH 4.5 was longer when St-Lr co-culture was used, while St-Lb had the lowest value. All the products had slight development of acid during the storage period, and lowest values were observed when the St-Bl co-culture was employed. Lb, BI and St cultures had high counts at pH 4.5 in the three bases. The total solids affected the viability of Lb and La. The technological interest of these combinations is discussed in this article. (C) 2008 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. AM rights reserved.
Resumo:
Aiming at contributing with the search for neuroactive substances from natural sources, we report for the first time antinociceptive and anticonvulsant effects of some Lychnophora species. We verify the protective effects of polar extracts (600 mg/kg, intraperitoneally), and methanolic fractions of L. staavioides and L. rupestris (100 mg/kg, intraperitoneally) in pentylenetetrazole-induced seizures on mice. Previously, a screening was accomplished, evaluating the antinociceptive central activity (hot plate test), with different extracts of L. rupestris, L. staavioides and L. diamantinana. It was possible to select the possible extracts of Lychnophora with central nervous system activity. Some of the active extracts were submitted to fractionation and purification process and the methanolic fractions of L. rupestris (stem) and L. staavioides (stem), with anticonvulsant properties (100 mg/kg, intraperitoneally), yielded 4,5-di-O-[E]-caffeoylquinic acid. This substance was injected intraperitoneally in mice and showed anticonvulsant effect against pentylenetetrazole-induced seizures at doses of 25 and 50 mg/kg. It has often been shown that seizures induced by pentylenetetrazole are involved in inhibition and/or attenuation of GABAergic neurotransmission. However, other systems of the central nervous system such as adenosinergic and glutamatergic could be involved in the caffeoylquinic acid effects. Further studies should be conducted to verify that the target receptor could be participating in this anticonvulsant property. Although other investigations have reported a series of biological activities from Lychnophora species, this is the first report of central analgesic and anticonvulsant activity in species of this genus.
Resumo:
Ent-kaur-16(17)-en-19-oic acid (kaurenoic acid, KA) is a tetracyclic diterpene prototype for natural anticaries agents. Six KA derivatives were prepared and their antimicrobial activity against the main microorganisms involved in the caries process evaluated. The sodium salt of KA (KA-Na) was the most active, displaying very promising MIC values for most pathogens. Time-kill assays against the primary causative agent of caries (Streptococcus mutans) indicated that KA and KA-Na only inhibited growth in the first 12 h, suggesting a bacteriostatic effect. After this period (12-24 h), their bactericidal effect was clearly noted. KA and KA-Na showed no synergy when combined with the gold standard anticariogenic (chlorhexidine dihydrochloride, CHD) in the checkerboard assays against S. mutans.
Resumo:
1 The hepatic disposition and metabolite kinetics of a homologous series of O-acyl (acetyl, propionyl, butanoyl, pentanoyl, hexanoyl and octanoyl) esters of salicylic acid (C2SA, C3SA, C4SA, C5SA, C6SA and C8SA, respectively) was determined using a single-pass, in-sills rat liver preparation. 2 The hepatic venous outflow profiles for the parent esters and the generated metabolite, salicylic acid (SA) were analysed by HPLC. Non-parametric moments analysis was used to determine the area under the curve (AUC'), mean transit time (MTT) and normalized variance (CV2) for the parent esters and generated SA. 3 Pregenerated SA ([C-14]-salicylic acid) was injected into each liver with the parent ester to determine its distribution characteristics. 4 The overall recovery of ester plus metabolite was 89% of the ester dose injected and independent of the ester carbon number, suggesting that ester extraction was due to hepatic metabolism to salicylic acid. 5 The metabolite AUC' value increased directly with the lipophilicity of the parent ester (from 0.12 for C2SA to 0.95 for C8SA). By contrast, the parent AUC' decreased with the lipophilicity (from 0.85 for C2SA to zero for C8SA). The metabolite MTT value also showed a trend to increase with the lipophilicity of the parent ester (from 15.72 s for C3SA to 61.97 s for C8SA). However, the parent MTT value shows no significant change across the series. 6 The two-compartment dispersion model was used to derive the kinetic parameters for parent ester, pregenerated SA and generated SA. Consequently, these parameters were used to estimate the values of AUG', MITT and CV2 for the parent ester and metabolite. The moments values obtained using the two-compartment dispersion model show similar trends to the corresponding moments values obtained from the outflow profiles using a non-parametric approach. 7 The more lipophilic aspirin analogues are more confined to the portal circulation after oral administration than aspirin due to their more extensive hepatic elimination avoiding systemic prostacyclin inhibition. Given that aspirin's selectivity as an anti-thrombotic agent has been postulated to be due to selective anti-platelet effects in the portal circulation, the more lipophilic and highly extracted analogues are potentially more selective anti-thrombotic agents than aspirin.
Resumo:
To facilitate the investigation of free mycophenolic acid concentrations we developed a high-performance liquid chromatography tandem mass spectrometry method using indomethacin as an internal standard. Free drug was isolated from plasma samples (500 mul) using ultrafiltration, The analytes were extracted from the ultrafiltrate (200 mul) using C-18 solid-phase extraction. Detection was by selected reactant monitoring of mycophenolic acid (m/z 318.9-->190.9) and the internal standard (m/z 356.0-->297.1) with an atmospheric pressure chemical ionisation interface. The total chromatographic analysis time was 12 min. The method was found to be linear over the range investigated, 2.5-200 mug/l (r>0.990, n=6). The relative recovery of the method for the control samples studied (7.5, 40.0 and 150 mug/l) ranged from 95 to 104%. The imprecision of the method, expressed in terms of intra- and inter-day coefficients of variation, was
Resumo:
Human N-acetyltransferase 1 (NAT1) is a widely distributed enzyme that catalyses the acetylation of arylamine and hydrazine drugs as well as several known carcinogens, and so its levels in the body may have toxicological importance with regard to drug toxicity and cancer risk. Recently, we showed that p-aminobenzoic acid (PABA) was able to down-regulate human NAT1 in cultured cells, but the exact mechanism by which PABA acts remains unclear. In the present study, we investigated the possibility that PABA-induced down-regulation involves its metabolism to N-OH-PABA, since N-OH-AAF functions as an irreversible inhibitor of hamster and rat NAT1. We show here that N-OH-PABA irreversibly inactivates human NAT1 both in cultured cells and cell cytosols in a time- and concentration-dependent manner. Maximal inactivation in cultured cells occurred within 4 hr of treatment, with a concentration of 30 muM reducing activity by 60 +/- 7%. Dialysis studies showed that inactivation was irreversible, and cofactor (acetyl coenzyme A) but not substrate (PABA) completely protected against inactivation, indicating involvement of the cofactor-binding site. In agreement with these data, kinetic studies revealed a 4-fold increase in cofactor K-m, but no change in substrate K-m for N-OH-PABA-treated cytosols compared to control. We conclude that N-OH-PABA decreases NAT1 activity by a direct interaction with the enzyme and appears to be a result of covalent modification at the cofactor-binding site. This is in contrast to our findings for PABA, which appears to reduce NAT1 activity by down-regulating the enzyme, leading to a decrease in NAT1 protein content. BIOCHEM PHARMACOL 60;12: 1829-1836, 2000. (C) 2000 Elsevier Science Inc.
Resumo:
DNA that enters the circulation is rapidly cleared both by tissue uptake and by DNase-mediated degradation. In this study, we have examined the uptake of linear plasmid DNA in an isolated perfused liver model and following intra-arterial administration to rats. We found that the DNA was rapidly taken up by the isolated perfused liver without degradation. The single-pass extraction ratio was 0.76 +/- 0.05, the mean transit time was 15.3 +/- 3.6 s, and the volume of distribution was 0.29 +/- 0.07 ml/g. Hepatic uptake was saturable and was inhibited by polyinosinic acid or polycationic liposomes but not by condensation of the DNA with polylysine. When the linear plasmid DNA was administered in vivo, plasma half-life was 3.1 +/- 0.2 min, volume of distribution was 670 +/- 85 ml/kg, and clearance was 32 +/- 4 min. Coadministration of cationic liposomes decreased the volume of distribution to 180 +/- 28 ml/kg as well as the half-life (2.6 +/- 0.2 min). By contrast, polyinosinic acid significantly increased the circulating half-life (7.7 +/- 0.5 min), decreased the volume of distribution (95 +/- 17 ml/kg), and partially inhibited DNA degradation. When administered along with the liposomes and the polyinosinic acid, the distribution of plasmid-derived radioactivity decreased in the liver and increased in most other peripheral tissues. This study shows that pharmacological manipulation of the uptake and degradation of DNA can alter its distribution and clearance in vivo. These results may be useful in optimizing gene delivery procedures for in vivo gene therapy.
Resumo:
Proteins found in the root exudates are thought to play a role in the interactions between plants and soil organisms. To gain a better understanding of protein secretion by roots, we conducted a systematic proteomic analysis of the root exudates of Arabidopsis thaliana at different plant developmental stages. In total, we identified 111 proteins secreted by roots, the majority of which were exuded constitutively during all stages of development. However, defense-related proteins such as chitinases, glucanases, myrosinases, and others showed enhanced secretion during flowering. Defense-impaired mutants npr1-1 and NahG showed lower levels of secretion of defense proteins at flowering compared with the wild type. The flowering-defective mutants fca-1, stm-4, and co-1 showed almost undetectable levels of defense proteins in their root exudates at similar time points. In contrast, root secretions of defense-enhanced cpr5-2 mutants showed higher levels of defense proteins. The proteomics data were positively correlated with enzymatic activity assays for defense proteins and with in silico gene expression analysis of genes specifically expressed in roots of Arabidopsis. In conclusion, our results show a clear correlation between defense-related proteins secreted by roots and flowering time.
Resumo:
The objective of the present study was to characterize the innate immune responses induced by in vitro stimulation of bovine primary mammary epithelial cells (bMEC) using gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. Quantitative real-time PCR (qRT-PCR) was employed to examine the mRNA expression of a panel of 22 cytokines, chemokines, beta-defensins and components of the Toll-Like Receptor signaling pathway. Stimulation of bMEC with LPS for 24 h elicited a marked increase in mRNA expression for IL-1 beta, IL-8, TNF alpha, CXCL6 and beta-defensin while members of the Toll-Like Receptor pathway.. although present, were largely unaffected. Surprisingly, stimulation of these cells with LTA for 24 h did not significantly alter the expression of these genes. A time course of the expression of IL-1 beta, IL-8, TNF alpha, CXCL6 and beta-defensin was subsequently performed. The mRNA levels of all genes increased rapidly after stimulation for 2-4 h with both LPS and LTA but only the former treatment resulted in sustained responses. In contrast, the increased gene expression for LTA stimulated cells returned to resting levels after 8-16 h with the exception of beta-defensin, which remained up-regulated. The limited and unsustained cytokine response to LTA may explain why mastitis caused by gram-positive bacteria has greater potential for chronic intra-mammary infection than gram-negative infection. It was concluded that bovine mammary epithelial cells have a strong but differential capacity to mount innate immune responses to bacterial cell wall components. Crown Copyright (c) 2005 Published by Elsevier Ltd. All rights reserved.
Resumo:
The dispersion model with mixed boundary conditions uses a single parameter, the dispersion number, to describe the hepatic elimination of xenobiotics and endogenous substances. An implicit a priori assumption of the model is that the transit time density of intravascular indicators is approximated by an inverse Gaussian distribution. This approximation is limited in that the model poorly describes the tail part of the hepatic outflow curves of vascular indicators. A sum of two inverse Gaussian functions is proposed as ail alternative, more flexible empirical model for transit time densities of vascular references. This model suggests that a more accurate description of the tail portion of vascular reference curves yields an elimination rate constant (or intrinsic clearance) which is 40% less than predicted by the dispersion model with mixed boundary conditions. The results emphasize the need to accurately describe outflow curves in using them as a basis for determining pharmacokinetic parameters using hepatic elimination models. (C) 1997 Society for Mathematical Biology.