934 resultados para 280305 Multimedia Programming
Resumo:
Srinivasan, A., King, R. D. and Bain, M.E. (2003) An Empirical Study of the Use of Relevance Information in Inductive Logic Programming. Journal of Machine Learning Research. 4(Jul):369-383
Resumo:
David P. Enot and Ross D. King (2003). Structure based drug design with inductive logic programming. The ACS National Meeting Spring 2003, New Orleans
Resumo:
David P. Enot and Ross D. King (2002) The use of Inductive Logic Programming in drug design. Proceedings of the 14th EuroQSAR Symposium (EuroQSAR 2002). Blackwell Publishing, p247-250
Resumo:
Rowland, J.J. and Taylor, J. (2002). Adaptive denoising in spectral analysis by genetic programming. Proc. IEEE Congress on Evolutionary Computation (part of WCCI), May 2002. pp 133-138. ISBN 0-7803-7281-6
Resumo:
Mead, J., Gray, S., Hamer, J., James, R., Sorva, J., Clair, C. S., and Thomas, L. 2006. A cognitive approach to identifying measurable milestones for programming skill acquisition. SIGCSE Bull. 38, 4 (Dec. 2006), 182-194.
Resumo:
Thomas, L., Ratcliffe, M., and Robertson, A. 2003. Code warriors and code-a-phobes: a study in attitude and pair programming. SIGCSE Bull. 35, 1 (Jan. 2003), 363-367.
Resumo:
Thomas, L., Ratcliffe, M., Woodbury, J., and Jarman, E. 2002. Learning styles and performance in the introductory programming sequence. SIGCSE Bull. 34, 1 (Mar. 2002), 33-37.
Resumo:
Inferring types for polymorphic recursive function definitions (abbreviated to polymorphic recursion) is a recurring topic on the mailing lists of popular typed programming languages. This is despite the fact that type inference for polymorphic recursion using for all-types has been proved undecidable. This report presents several programming examples involving polymorphic recursion and determines their typability under various type systems, including the Hindley-Milner system, an intersection-type system, and extensions of these two. The goal of this report is to show that many of these examples are typable using a system of intersection types as an alternative form of polymorphism. By accomplishing this, we hope to lay the foundation for future research into a decidable intersection-type inference algorithm. We do not provide a comprehensive survey of type systems appropriate for polymorphic recursion, with or without type annotations inserted in the source language. Rather, we focus on examples for which types may be inferred without type annotations.
Resumo:
The purpose of this project is the creation of a graphical "programming" interface for a sensor network tasking language called STEP. The graphical interface allows the user to specify a program execution graphically from an extensible pallet of functionalities and save the results as a properly formatted STEP file. Moreover, the software is able to load a file in STEP format and convert it into the corresponding graphical representation. During both phases a type-checker is running on the background to ensure that both the graphical representation and the STEP file are syntactically correct. This project has been motivated by the Sensorium project at Boston University. In this technical report we present the basic features of the software, the process that has been followed during the design and implementation. Finally, we describe the approach used to test and validate our software.
Resumo:
This paper demonstrates an optimal control solution to change of machine set-up scheduling based on dynamic programming average cost per stage value iteration as set forth by Cararnanis et. al. [2] for the 2D case. The difficulty with the optimal approach lies in the explosive computational growth of the resulting solution. A method of reducing the computational complexity is developed using ideas from biology and neural networks. A real time controller is described that uses a linear-log representation of state space with neural networks employed to fit cost surfaces.
Resumo:
This work considers the static calculation of a program’s average-case time. The number of systems that currently tackle this research problem is quite small due to the difficulties inherent in average-case analysis. While each of these systems make a pertinent contribution, and are individually discussed in this work, only one of them forms the basis of this research. That particular system is known as MOQA. The MOQA system consists of the MOQA language and the MOQA static analysis tool. Its technique for statically determining average-case behaviour centres on maintaining strict control over both the data structure type and the labeling distribution. This research develops and evaluates the MOQA language implementation, and adds to the functions already available in this language. Furthermore, the theory that backs MOQA is generalised and the range of data structures for which the MOQA static analysis tool can determine average-case behaviour is increased. Also, some of the MOQA applications and extensions suggested in other works are logically examined here. For example, the accuracy of classifying the MOQA language as reversible is investigated, along with the feasibility of incorporating duplicate labels into the MOQA theory. Finally, the analyses that take place during the course of this research reveal some of the MOQA strengths and weaknesses. This thesis aims to be pragmatic when evaluating the current MOQA theory, the advancements set forth in the following work and the benefits of MOQA when compared to similar systems. Succinctly, this work’s significant expansion of the MOQA theory is accompanied by a realistic assessment of MOQA’s accomplishments and a serious deliberation of the opportunities available to MOQA in the future.
Resumo:
This article describes advances in statistical computation for large-scale data analysis in structured Bayesian mixture models via graphics processing unit (GPU) programming. The developments are partly motivated by computational challenges arising in fitting models of increasing heterogeneity to increasingly large datasets. An example context concerns common biological studies using high-throughput technologies generating many, very large datasets and requiring increasingly high-dimensional mixture models with large numbers of mixture components.We outline important strategies and processes for GPU computation in Bayesian simulation and optimization approaches, give examples of the benefits of GPU implementations in terms of processing speed and scale-up in ability to analyze large datasets, and provide a detailed, tutorial-style exposition that will benefit readers interested in developing GPU-based approaches in other statistical models. Novel, GPU-oriented approaches to modifying existing algorithms software design can lead to vast speed-up and, critically, enable statistical analyses that presently will not be performed due to compute time limitations in traditional computational environments. Supplementalmaterials are provided with all source code, example data, and details that will enable readers to implement and explore the GPU approach in this mixture modeling context. © 2010 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.
Resumo:
The health of clergy is important, and clergy may find health programming tailored to them more effective. Little is known about existing clergy health programs. We contacted Protestant denominational headquarters and searched academic databases and the Internet. We identified 56 clergy health programs and categorized them into prevention and personal enrichment; counseling; marriage and family enrichment; peer support; congregational health; congregational effectiveness; denominational enrichment; insurance/strategic pension plans; and referral-based programs. Only 13 of the programs engaged in outcomes evaluation. Using the Socioecological Framework, we found that many programs support individual-level and institutional-level changes, but few programs support congregational-level changes. Outcome evaluation strategies and a central repository for information on clergy health programs are needed. © 2011 Springer Science+Business Media, LLC.
Resumo:
Gemstone Team Peace in Prisons
Resumo:
Programmed death is often associated with a bacterial stress response. This behavior appears paradoxical, as it offers no benefit to the individual. This paradox can be explained if the death is 'altruistic': the killing of some cells can benefit the survivors through release of 'public goods'. However, the conditions where bacterial programmed death becomes advantageous have not been unambiguously demonstrated experimentally. Here, we determined such conditions by engineering tunable, stress-induced altruistic death in the bacterium Escherichia coli. Using a mathematical model, we predicted the existence of an optimal programmed death rate that maximizes population growth under stress. We further predicted that altruistic death could generate the 'Eagle effect', a counter-intuitive phenomenon where bacteria appear to grow better when treated with higher antibiotic concentrations. In support of these modeling insights, we experimentally demonstrated both the optimality in programmed death rate and the Eagle effect using our engineered system. Our findings fill a critical conceptual gap in the analysis of the evolution of bacterial programmed death, and have implications for a design of antibiotic treatment.