991 resultados para velocity change


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technology and Nursing Practice explains and critically engages with the practice implications of technology for nursing. It takes a broad view of technology, covering not only health informatics, but also 'tele-nursing' and the use of equipment in clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to investigate the factors that influence midlife women to make positive exercise and dietary changes. In late 2005 questionnaires were mailed to 866 women aged 51–66 years from rural and urban locations in Queensland, Australia and participating in Stage 2 of the Healthy Aging of Women Study. The questionnaires sought data on socio-demographics, body mass index (BMI), chronic health conditions, self-efficacy, exercise and dietary behavior change since age 40, and health-related quality of life. Five hundred and sixty four (69%) were completed and returned by early 2006. Data analysis comprised descriptive and bivariate statistics and structural equation modeling. The results showed that midlife is a significant time for women to make positive health behavior changes. Approximately one-third of the sample (34.6%) indicated that they had increased their exercise and around 60% had made an effort to eat more healthily since age 40. Modeling showed self-efficacy to be important in making both exercise and dietary changes. Although education appeared to influence self-efficacy in relation to exercise change, this was not the case for dietary change. The study has application for programs promoting healthy aging among women, and implies that those with low education, high BMI and poor mental health may need considerable support to improve their lifestyles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of radar was developed for the estimation of the distance (range) and velocity of a target from a receiver. The distance measurement is obtained by measuring the time taken for the transmitted signal to propagate to the target and return to the receiver. The target's velocity is determined by measuring the Doppler induced frequency shift of the returned signal caused by the rate of change of the time- delay from the target. As researchers further developed conventional radar systems it become apparent that additional information was contained in the backscattered signal and that this information could in fact be used to describe the shape of the target itself. It is due to the fact that a target can be considered to be a collection of individual point scatterers, each of which has its own velocity and time- delay. DelayDoppler parameter estimation of each of these point scatterers thus corresponds to a mapping of the target's range and cross range, thus producing an image of the target. Much research has been done in this area since the early radar imaging work of the 1960s. At present there are two main categories into which radar imaging falls. The first of these is related to the case where the backscattered signal is considered to be deterministic. The second is related to the case where the backscattered signal is of a stochastic nature. In both cases the information which describes the target's scattering function is extracted by the use of the ambiguity function, a function which correlates the backscattered signal in time and frequency with the transmitted signal. In practical situations, it is often necessary to have the transmitter and the receiver of the radar system sited at different locations. The problem in these situations is 'that a reference signal must then be present in order to calculate the ambiguity function. This causes an additional problem in that detailed phase information about the transmitted signal is then required at the receiver. It is this latter problem which has led to the investigation of radar imaging using time- frequency distributions. As will be shown in this thesis, the phase information about the transmitted signal can be extracted from the backscattered signal using time- frequency distributions. The principle aim of this thesis was in the development, and subsequent discussion into the theory of radar imaging, using time- frequency distributions. Consideration is first given to the case where the target is diffuse, ie. where the backscattered signal has temporal stationarity and a spatially white power spectral density. The complementary situation is also investigated, ie. where the target is no longer diffuse, but some degree of correlation exists between the time- frequency points. Computer simulations are presented to demonstrate the concepts and theories developed in the thesis. For the proposed radar system to be practically realisable, both the time- frequency distributions and the associated algorithms developed must be able to be implemented in a timely manner. For this reason an optical architecture is proposed. This architecture is specifically designed to obtain the required time and frequency resolution when using laser radar imaging. The complex light amplitude distributions produced by this architecture have been computer simulated using an optical compiler.

Relevância:

20.00% 20.00%

Publicador: