858 resultados para rigid gas permeable lens materials
Resumo:
A model gas turbine burner was employed to investigate spray flames established under globally lean, continuous, swirling conditions. Two types of fuel were used to generate liquid spray flames: palm biodiesel and Jet-A1. The main swirling air flow was preheated to 350°C prior to mixing with airblast-atomized fuel droplets at atmospheric pressure. The global flame structure of flame and flow field were investigated at the fixed power output of 6 kW. Flame chemiluminescence imaging technique was employed to investigate the flame reaction zones, while particle imaging velocimetry (PIV) was utilized to measure the flow field within the combustor. The flow fields of both flames are almost identical despite some differences in the flame reaction zones. © (2013) Trans Tech Publications, Switzerland.
Resumo:
In order to guarantee a sustainable supply of future energy demand without compromising the environment, some actions for a substantial reduction of CO 2 emissions are nowadays deeply analysed. One of them is the improvement of the nuclear energy use. In this framework, innovative gas-cooled reactors (both thermal and fast) seem to be very attractive from the electricity production point of view and for the potential industrial use along the high temperature processes (e.g., H 2 production by steam reforming or I-S process). This work focuses on a preliminary (and conservative) evaluation of possible advantages that a symbiotic cycle (EPR-PBMR-GCFR) could entail, with special regard to the reduction of the HLW inventory and the optimization of the exploitation of the fuel resources. The comparison between the symbiotic cycle chosen and the reference one (once-through scenario, i.e., EPR-SNF directly disposed) shows a reduction of the time needed to reach a fixed reference level from ∼170000 years to ∼1550 years (comparable with typical human times and for this reason more acceptable by the public opinion). In addition, this cycle enables to have a more efficient use of resources involved: the total electric energy produced becomes equal to ∼630 TWh/year (instead of only ∼530 TWh/year using only EPR) without consuming additional raw materials. © 2009 Barbara Vezzoni et al.
Resumo:
The principle of high-electron-mobility transistor (HEMT) and the property of two-dimensional electron gas (2DEG) have been analyzed theoretically. The concentration and distribution of 2DEG in various channel layers are calculated by numerical method. Variation of 2DEG concentration in different subband of the quantum well is discussed in detail. Calculated results show that sheet electron concentration of 2DEG in the channel is affected slightly by the thickness of the channel. But the proportion of electrons inhabited in different subbands can be affected by the thickness of the channel. When the size of channel lies between 20-25 nm, the number of electrons occupying the second subband reaches the maximum. This result can be used in parameter design of materials and devices.
Resumo:
High-quality GaN epilayers were consistently obtained using a home-made gas-sourer MBE system on sapphire substrates. Room-temperature electron mobility of the grown GaN film is 300 cm(2)/V s with a background electron concentration as low as 2 x 10(17) cm(-3) The full-width at half-maximum of the GaN (0 0 0 2) double-crystal X-ray rocking curve is 6 arcmin. At low temperature (3.5 K), the FWHM of the: near-band-edge photoluminescence emission line is 10 meV. Furthermore, using piezoelectric effect alone with the high-quality films, two-dimensional electron gas was formed in a GaN/AlN/GaN/sapphire structure. Its room-temperature and low-temperature (77 K) electron mobility is 680 cm(2)/V s and 1700 cm(2)/V s, and the corresponding sheet electron density is 3.2 x 10(13) and 2.6 x 10(13) cm(-2), respectively. (C) 2001 Published by Elsevier Science.
Resumo:
Photoluminescence (PL) and temperature-dependent Hall effect measurements were carried out in (0001) and (11 (2) over bar0) AlGaN/GaN heterostructures grown on sapphire substrates by metalorganic chemical vapor deposition. There are strong spontaneous and piezoelectric electric fields (SPF) along the growth orientation of the (0001) AlGaN/GaN heterostructures. At the same time there are no corresponding SPF along that of the (1120) AlGaN/GaN. A strong PL peak related to the recombination between two-dimensional electron gas (2DEG) and photoexcited holes was observed at 3.258 eV at room temperature in (0001) AlGaN/GaN heterointerfaces while no corresponding PL peak was observed in (11 (2) over bar0). The existence of a 2DEG was observed in (0001) AlGaN/GaN multi-layers with a mobility saturated at 6000 cm(2)/V s below 80 K, whereas a much lower mobility was measured in (11 (2) over bar0). These results indicated that the SPF was the main element to cause the high mobility and high sheet-electron-density 2DEG in AlGaN/GaN heterostructures. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
High-quality GaN epilayers were consistently obtained using a home-made gas-sourer MBE system on sapphire substrates. Room-temperature electron mobility of the grown GaN film is 300 cm(2)/V s with a background electron concentration as low as 2 x 10(17) cm(-3) The full-width at half-maximum of the GaN (0 0 0 2) double-crystal X-ray rocking curve is 6 arcmin. At low temperature (3.5 K), the FWHM of the: near-band-edge photoluminescence emission line is 10 meV. Furthermore, using piezoelectric effect alone with the high-quality films, two-dimensional electron gas was formed in a GaN/AlN/GaN/sapphire structure. Its room-temperature and low-temperature (77 K) electron mobility is 680 cm(2)/V s and 1700 cm(2)/V s, and the corresponding sheet electron density is 3.2 x 10(13) and 2.6 x 10(13) cm(-2), respectively. (C) 2001 Published by Elsevier Science.
Resumo:
In the present work the photoluminescence (PL) character of sapphire implanted with 110-keV He, Ar or Ne ions and subsequently irradiated with 230-MeV Pb was studied. The implantation was performed at 320 and 600 K using fluences from 5.0 x 10(16) to 2.0 x 10(17) ions/cm(2). The Pb ion irradiation was carried out at 320 K. The obtained PL spectra showed peaks at 375, 413 and 450 nm with maximum intensity at an implantation fluence of 5.0 x 10(16) ions/cm(2) and a new peak at 390 nm appeared in the He-implanted and subsequently Pb-irradiated samples. Infrared spectra showed a broadening of the absorption band between 460 and 510 nm indicating strongly damaged regions formed in the Al2O3 samples. A possible PL mechanism is discussed.
Resumo:
This paper reviews the recent progress made in the asymmetric synthesis on chiral catalysts in porous materials and discusses the effects of surface and pores on enantio-selectivity (confinement effect). This paper also summarizes various approaches of immobilization of the chiral catalysts onto surfaces and into pores of solid inorganic supports such as microporous and mesoporous materials. The most important reactions surveyed for the chiral synthesis in porous materials include epoxidation. hydrogenation, hydroformylation, Aldol and Diels-Alder reactions, etc. The confinement effect originated from the surfaces and the pores turns out to be a general phenomenon. which may make the enantioselectivity increase (positive effect) or decrease (negative effect). The confinement effect becomes more pronounced particularly when the bonding between the catalyst and the surface is more rigid and the pore size is tuned to a suitable range. It is proposed that the confinement in chiral synthesis is essentially a consequence of subtle change in transition states induced by weak-interaction in pores or on surfaces. It is also anticipated that the enantioselectivity could be improved by tuning the confinement effect based on the molecular designing of the pore/surface and the immobilized catalysts according to the requirements of chiral reactions.
Resumo:
The rigid backbone of the poly(3-butylthiophene) molecule adopts a perpendicular orientation with respect to the substrate by using a solvent-vapor treatment (see figure). Small and closely contacting spherulites instead of conventional whisker-like crystals are achieved. This could be utilized to improve charge-carrier mobility particularly in the direction normal to the film plane by designing and constructing thick crystalline domains in the functional layer.
Resumo:
A novel wholly aromatic diamine, 2,2 '-bis(3-sulfobenzoyl)benzidine (2,2 '-BSBB), was successfully prepared by the reaction of 2,2 '-dibenzoylbenzidine (2,2 '-DBB) with fuming sulfuric acid. Copolymerization of 1,4,5,8-naphathlenetetracarboxylic dianhydride with 2,2 '-BSBB and 2,2 '-DBB generated a series of rigid-rod sulfonated polyimides. The synthesized copolymers with the -SO3H group on the side chain of polymers possessed high molecular weights revealed by their high viscosity and the formation of tough and flexible membranes. The copolymer membranes exhibited excellent oxidative stability and mechanical properties due to their fully aromatic structure extending through the backbone and pendent groups. They displayed clear anisotropic membrane swelling in water with negligibly small dimensional changes in the plane direction of the membrane. The proton conductivities of copolymer membranes increased with increasing IEC and temperature, reaching value above 1.25 x 10(-1) S/cm at 20 degrees C, which is higher than that of Nafion (R) 117 at the same measurement condition. They displayed reasonably high proton conductivity due to the higher acidity of benzoyl sulfonic acid group, the larger interchain spacing, which is available for water to occupy, taking their lower water uptake (WU) into account. Consequently, these materials proved to be promising as proton exchange membrane.
Resumo:
Novel bisphenol monomers (1a-d) containing phthalimide groups were synthesized by the reaction of phenolphthalein with ammonia, methylamine, aniline, and 4-tert-butylanilne, respectively. A series of cardo poly (arylene ether sulfone)s was synthesized via aromatic nucleophilic substitution of 1a-d with dichlorodiphenylsulfone, and characterized in terms of thermal, mechanical and gas transport properties to H-2, O-2, N-2, and CO2. The polymers showed high glass transition temperature in the range 230-296 degrees C, good solubility in polar solvents as well as excellent thermal stability with 5% weight loss above 410 degrees C. The most permeable membrane studied showed permeability coefficients of 1.78 barrers to O-2 and 13.80 barrers to CO2, with ideal selectivity. factors of 4.24 for O-2/N-2 pair and 28.75 for CO2/CH4 pair. Furthermore, the structure-property relationship among these cardo poly(arylene ether sulfone)s had been discussed on solubility, thermal stability, mechanical, and gas permeation properties. The results indicated that introducing 4-tert-butylphenyl group improved the gas permeability of polymers evidently.
Resumo:
A series of soluble poly(amide-imide)s (PAIs) bearing triethylammonium sulfonate groups were synthesized directly using trimellitic anhydride chloride (TMAC) polycondensation with sulfonated diamine such as 2,2'-benzidinedisulfonic acid (BDSA), 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS), and nonsulfonated diamine 4,4-diaminodiphenyl methane in the presence of triethylamine. The resulting copolymers exhibited high molecular weights (high inherent viscosity), and a combination of desirable properties such as good solubility in dipolar aprotic solvents, film-forming capability, and good mechanical properties. Wide-angle X-ray diffraction revealed that the polymers were amorphous. These copolymers showed high permeability coefficients of water vapor because of the presence of the hydrophilic triethylammonium sulfonate groups. The water vapor permeability coefficients (P-w) and permselectivity coefficients of water vapor to nitrogen and methane [alpha(H2O/N-2) and (alpha(H2O/CH4)] Of the films increased with increasing the amount of the triethylammonium sulfonated groups.
Resumo:
Rare earths are a series of minerals with special properties that make them essential for applications including miniaturized electronics, computer hard disks, display panels, missile guidance, pollution controlling catalysts, H-2-storage and other advanced materials. The use of thermal barrier coatings (TBCs) has the potential to extend the working temperature and the life of a gas turbine by providing a layer of thermal insulation between the metallic substrate and the hot gas. Yttria (Y2O3), as one of the most important rare earth oxides, has already been used in the typical TBC material YSZ (yttria stabilized zirconia). In the development of the TBC materials, especially in the latest ten years, rare earths have been found to be more and more important. All the new candidates of TBC materials contain a large quantity of rare earths, such as R2Zr2O7 (R=La, Ce, Nd, Gd), CeO2-YSZ, RMeAl11O19 (R=La, Nd; Me=Mg, Ca, Sr) and LaPO4. The concept of double-ceramic-layer coatings based on the rare earth materials and YSZ is effective for the improvement of the thermal shock life of TBCs at high temperature.
Resumo:
This paper summarizes the basic properties of ceramic materials for thermal barrier coatings. Ceramics, in contrast to metals, are often more resistant to oxidation, corrosion and wear, as well as being better thermal insulators. Except yttria stabilized zirconia, other materials such as lanthanum zirconate and rare earth oxides are also promising materials for thermal barrier coatings.