955 resultados para large deflections analysis
Resumo:
Conifers are resistant to attack from a large number of potential herbivores or pathogens. Previous molecular and biochemical characterization of selected conifer defence systems support a model of multigenic, constitutive and induced defences that act on invading insects via physical, chemical, biochemical or ecological (multitrophic) mechanisms. However, the genomic foundation of the complex defence and resistance mechanisms of conifers is largely unknown. As part of a genomics strategy to characterize inducible defences and possible resistance mechanisms of conifers against insect herbivory, we developed a cDNA microarray building upon a new spruce (Picea spp.) expressed sequence tag resource. This first-generation spruce cDNA microarray contains 9720 cDNA elements representing c. 5500 unique genes. We used this array to monitor gene expression in Sitka spruce (Picea sitchensis) bark in response to herbivory by white pine weevils (Pissodes strobi, Curculionidae) or wounding, and in young shoot tips in response to western spruce budworm (Choristoneura occidentalis, Lepidopterae) feeding. Weevils are stem-boring insects that feed on phloem, while budworms are foliage feeding larvae that consume needles and young shoot tips. Both insect species and wounding treatment caused substantial changes of the host plant transcriptome detected in each case by differential gene expression of several thousand array elements at 1 or 2 d after the onset of treatment. Overall, there was considerable overlap among differentially expressed gene sets from these three stress treatments. Functional classification of the induced transcripts revealed genes with roles in general plant defence, octadecanoid and ethylene signalling, transport, secondary metabolism, and transcriptional regulation. Several genes involved in primary metabolic processes such as photosynthesis were down-regulated upon insect feeding or wounding, fitting with the concept of dynamic resource allocation in plant defence. Refined expression analysis using gene-specific primers and real-time PCR for selected transcripts was in agreement with microarray results for most genes tested. This study provides the first large-scale survey of insect-induced defence transcripts in a gymnosperm and provides a platform for functional investigation of plant-insect interactions in spruce. Induction of spruce genes of octadecanoid and ethylene signalling, terpenoid biosynthesis, and phenolic secondary metabolism are discussed in more detail.
Resumo:
Regional safety program managers face a daunting challenge in the attempt to reduce deaths, injuries, and economic losses that result from motor vehicle crashes. This difficult mission is complicated by the combination of a large perceived need, small budget, and uncertainty about how effective each proposed countermeasure would be if implemented. A manager can turn to the research record for insight, but the measured effect of a single countermeasure often varies widely from study to study and across jurisdictions. The challenge of converting widespread and conflicting research results into a regionally meaningful conclusion can be addressed by incorporating "subjective" information into a Bayesian analysis framework. Engineering evaluations of crashes provide the subjective input on countermeasure effectiveness in the proposed Bayesian analysis framework. Empirical Bayes approaches are widely used in before-and-after studies and "hot-spot" identification; however, in these cases, the prior information was typically obtained from the data (empirically), not subjective sources. The power and advantages of Bayesian methods for assessing countermeasure effectiveness are presented. Also, an engineering evaluation approach developed at the Georgia Institute of Technology is described. Results are presented from an experiment conducted to assess the repeatability and objectivity of subjective engineering evaluations. In particular, the focus is on the importance, methodology, and feasibility of the subjective engineering evaluation for assessing countermeasures.
Resumo:
The treatment of challenging fractures and large osseous defects presents a formidable problem for orthopaedic surgeons. Tissue engineering/regenerative medicine approaches seek to solve this problem by delivering osteogenic signals within scaffolding biomaterials. In this study, we introduce a hybrid growth factor delivery system that consists of an electrospun nanofiber mesh tube for guiding bone regeneration combined with peptide-modified alginate hydrogel injected inside the tube for sustained growth factor release. We tested the ability of this system to deliver recombinant bone morphogenetic protein-2 (rhBMP-2) for the repair of critically-sized segmental bone defects in a rat model. Longitudinal [mu]-CT analysis and torsional testing provided quantitative assessment of bone regeneration. Our results indicate that the hybrid delivery system resulted in consistent bony bridging of the challenging bone defects. However, in the absence of rhBMP-2, the use of nanofiber mesh tube and alginate did not result in substantial bone formation. Perforations in the nanofiber mesh accelerated the rhBMP-2 mediated bone repair, and resulted in functional restoration of the regenerated bone. [mu]-CT based angiography indicated that perforations did not significantly affect the revascularization of defects, suggesting that some other interaction with the tissue surrounding the defect such as improved infiltration of osteoprogenitor cells contributed to the observed differences in repair. Overall, our results indicate that the hybrid alginate/nanofiber mesh system is a promising growth factor delivery strategy for the repair of challenging bone injuries.
Resumo:
One of the main causes of above knee or transfemoral amputation (TFA) in the developed world is trauma to the limb. The number of people undergoing TFA due to limb trauma, particularly due to war injuries, has been increasing. Typically the trauma amputee population, including war-related amputees, are otherwise healthy, active and desire to return to employment and their usual lifestyle. Consequently there is a growing need to restore long-term mobility and limb function to this population. Traditionally transfemoral amputees are provided with an artificial or prosthetic leg that consists of a fabricated socket, knee joint mechanism and a prosthetic foot. Amputees have reported several problems related to the socket of their prosthetic limb. These include pain in the residual limb, poor socket fit, discomfort and poor mobility. Removing the socket from the prosthetic limb could eliminate or reduce these problems. A solution to this is the direct attachment of the prosthesis to the residual bone (femur) inside the residual limb. This technique has been used on a small population of transfemoral amputees since 1990. A threaded titanium implant is screwed in to the shaft of the femur and a second component connects between the implant and the prosthesis. A period of time is required to allow the implant to become fully attached to the bone, called osseointegration (OI), and be able to withstand applied load; then the prosthesis can be attached. The advantages of transfemoral osseointegration (TFOI) over conventional prosthetic sockets include better hip mobility, sitting comfort and prosthetic retention and fewer skin problems on the residual limb. However, due to the length of time required for OI to progress and to complete the rehabilitation exercises, it can take up to twelve months after implant insertion for an amputee to be able to load bear and to walk unaided. The long rehabilitation time is a significant disadvantage of TFOI and may be impeding the wider adoption of the technique. There is a need for a non-invasive method of assessing the degree of osseointegration between the bone and the implant. If such a method was capable of determining the progression of TFOI and assessing when the implant was able to withstand physiological load it could reduce the overall rehabilitation time. Vibration analysis has been suggested as a potential technique: it is a non destructive method of assessing the dynamic properties of a structure. Changes in the physical properties of a structure can be identified from changes in its dynamic properties. Consequently vibration analysis, both experimental and computational, has been used to assess bone fracture healing, prosthetic hip loosening and dental implant OI with varying degrees of success. More recently experimental vibration analysis has been used in TFOI. However further work is needed to assess the potential of the technique and fully characterise the femur-implant system. The overall aim of this study was to develop physical and computational models of the TFOI femur-implant system and use these models to investigate the feasibility of vibration analysis to detect the process of OI. Femur-implant physical models were developed and manufactured using synthetic materials to represent four key stages of OI development (identified from a physiological model), simulated using different interface conditions between the implant and femur. Experimental vibration analysis (modal analysis) was then conducted using the physical models. The femur-implant models, representing stage one to stage four of OI development, were excited and the modal parameters obtained over the range 0-5kHz. The results indicated the technique had limited capability in distinguishing between different interface conditions. The fundamental bending mode did not alter with interfacial changes. However higher modes were able to track chronological changes in interface condition by the change in natural frequency, although no one modal parameter could uniquely distinguish between each interface condition. The importance of the model boundary condition (how the model is constrained) was the key finding; variations in the boundary condition altered the modal parameters obtained. Therefore the boundary conditions need to be held constant between tests in order for the detected modal parameter changes to be attributed to interface condition changes. A three dimensional Finite Element (FE) model of the femur-implant model was then developed and used to explore the sensitivity of the modal parameters to more subtle interfacial and boundary condition changes. The FE model was created using the synthetic femur geometry and an approximation of the implant geometry. The natural frequencies of the FE model were found to match the experimental frequencies within 20% and the FE and experimental mode shapes were similar. Therefore the FE model was shown to successfully capture the dynamic response of the physical system. As was found with the experimental modal analysis, the fundamental bending mode of the FE model did not alter due to changes in interface elastic modulus. Axial and torsional modes were identified by the FE model that were not detected experimentally; the torsional mode exhibited the largest frequency change due to interfacial changes (103% between the lower and upper limits of the interface modulus range). Therefore the FE model provided additional information on the dynamic response of the system and was complementary to the experimental model. The small changes in natural frequency over a large range of interface region elastic moduli indicated the method may only be able to distinguish between early and late OI progression. The boundary conditions applied to the FE model influenced the modal parameters to a far greater extent than the interface condition variations. Therefore the FE model, as well as the experimental modal analysis, indicated that the boundary conditions need to be held constant between tests in order for the detected changes in modal parameters to be attributed to interface condition changes alone. The results of this study suggest that in a clinical setting it is unlikely that the in vivo boundary conditions of the amputated femur could be adequately controlled or replicated over time and consequently it is unlikely that any longitudinal change in frequency detected by the modal analysis technique could be attributed exclusively to changes at the femur-implant interface. Therefore further development of the modal analysis technique would require significant consideration of the clinical boundary conditions and investigation of modes other than the bending modes.
Resumo:
Recent years have seen an increased uptake of business process management technology in industries. This has resulted in organizations trying to manage large collections of business process models. One of the challenges facing these organizations concerns the retrieval of models from large business process model repositories. For example, in some cases new process models may be derived from existing models, thus finding these models and adapting them may be more effective and less error-prone than developing them from scratch. Since process model repositories may be large, query evaluation may be time consuming. Hence, we investigate the use of indexes to speed up this evaluation process. To make our approach more applicable, we consider the semantic similarity between labels. Experiments are conducted to demonstrate that our approach is efficient.
Resumo:
Acoustic emission (AE) is the phenomenon where high frequency stress waves are generated by rapid release of energy within a material by sources such as crack initiation or growth. AE technique involves recording these stress waves by means of sensors placed on the surface and subsequent analysis of the recorded signals to gather information such as the nature and location of the source. It is one of the several diagnostic techniques currently used for structural health monitoring (SHM) of civil infrastructure such as bridges. Some of its advantages include ability to provide continuous in-situ monitoring and high sensitivity to crack activity. But several challenges still exist. Due to high sampling rate required for data capture, large amount of data is generated during AE testing. This is further complicated by the presence of a number of spurious sources that can produce AE signals which can then mask desired signals. Hence, an effective data analysis strategy is needed to achieve source discrimination. This also becomes important for long term monitoring applications in order to avoid massive date overload. Analysis of frequency contents of recorded AE signals together with the use of pattern recognition algorithms are some of the advanced and promising data analysis approaches for source discrimination. This paper explores the use of various signal processing tools for analysis of experimental data, with an overall aim of finding an improved method for source identification and discrimination, with particular focus on monitoring of steel bridges.
Resumo:
Rice tungro bacilliform virus (RTBV) is one of the two viruses that cause tungro disease. Four RTBV strains maintained in the greenhouse for 4 years, G1, G2, Ic, and L, were differentiated by restriction fragment length polymorphism (RFLP) analysis of the native viral DNA. Although strains G1 and Ic had identical restriction patterns when cleaved with Pst1, BamHI, EcoRI, and EcoRV, they can be differentiated from strains G2 and L by EcoRI and EcoRV digestion. These same endonucleases also differentiate strain G2 from strain L. When total DNA extracts from infected plants were used instead of viral DNA, and digested with EcoRV, identical restriction patterns for each strain (G2 and L) were obtained from roots, leaves, and leaf sheaths of infected plants. The restriction patterns were consistent from plant to plant, in different varieties, and at different times after inoculation. This technique can be used to differentiate RTBV strains and determine the variability of a large number of field samples.
Resumo:
Lean project management is the comprehensive adaption of other lean concept like lean construction, lean manufacturing and lean thinking into project management context. Execution of many similar industrial projects creates the idea of lean project management in companies and rapidly growing in industries. This paper offers the standardization method in order to achieve Lean project management in large scale industrial project. Standardization refers to all activity which makes two projects most identical and unify to each other like standardization of design, reducing output variability, value analysis and strategic management. Although standard project may have minor effi ciency decrease, compare to custom built project; but great advantage of standard project like cost saving, time reduction and quality improvement justify standardization methodology. This paper based on empirical experience in industrial project and theoretical analysis of benefi ts of project standardization.
Resumo:
Purpose: In the global knowledge economy, investment in knowledge-intensive industries and information and communication technology (ICT) infrastructures are seen as significant factors in improving the overall socio-economic fabric of cities. Consequently knowledge-based urban development (KBUD) has become a new paradigm in urban planning and development, for increasing the welfare and competitiveness of cities and regions. The paper discusses the critical connections between KBUD strategies and knowledge-intensive industries and ICT infrastructures. In particular, it investigates the application of the knowledge-based urban development concept by discussing one of South East Asia’s large scale manifestations of KBUD; Malaysia’s Multimedia Super Corridor. ----- ----- Design/methodology/approach: The paper provides a review of the KBUD concept and develops a knowledge-based urban development assessment framework to provide a clearer understanding of development and evolution of KBUD manifestations. Subsequently the paper investigates the implementation of the KBUD concept within the Malaysian context, and particularly the Multimedia Super Corridor (MSC). ----- ----- Originality/value: The paper, with its KBUD assessment framework, scrutinises Malaysia’s experince; providing an overview of the MSC project and discussion of the case findings. The development and evolution of the MSC is viewed with regard to KBUD policy implementation, infrastructural implications, and the agencies involved in the development and management of the MSC. ----- ----- Practical implications: The emergence of the knowledge economy, together with the issues of globalisation and rapid urbanisation, have created an urgent need for urban planners to explore new ways of strategising planning and development that encompasses the needs and requirements of the knowledge economy and society. In light of the literature and MSC case findings, the paper provides generic recommendations, on the orchestration of knowledge-based urban development, for other cities and regions seeking to transform to the knowledge economy.
Resumo:
Research is indicating that individuals who present for DUI treatment may have competing substance abuse and mental health needs. This study aimed to examine the extent of such comorbidity issues among a sample of Texas DUI offenders. Method: Records of 36,372 DUI clients and 308,695 non-DUI clients admitted to Texas treatment programs between 2005 and 2008 were obtained from the State's administrative dataset. The data were analysed to identify the relationship between substance use, psychiatric problems, program completion and recidivism rates. Results: Analysis indicated that while non-DUI clients were more likely to present with more severe illicit substance use problems, DUI clients were more likely to have a primary problem with alcohol. Additionally, a cannabis use problem was also found to be significantly associated with DUI recidivism in the last year. In regards to mental health needs, a major finding was that depression was the most common psychiatric condition reported by DUI clients, including those with more than one DUI offence in the past year. This group were also more at risk of being diagnosed with Bipolar Disorder compared to the general population, and such a diagnosis was also associated with an increased likelihood of not completing treatment. Interestingly, female DUI and non-DUI clients were also more likely to be diagnosed with mental health problems compared to males, as well as more likely to be placed on medications at admission and have problems with methamphetamine, cocaine, and opiates. Conclusion: The findings highlight the complex competing needs of some DUI offenders who enter treatment. The results also suggest that there is a need to utilise mental health and substance abuse screening methods to ensure DUI offenders are directed towards appropriate treatment pathways as well as ensure that such interventions adequately cater for complex substance abuse and psychiatric needs.
Resumo:
The present paper addresses the findings of a preliminary investigation into policy and codes of conduct pertaining to the use of laptops and PDA’s in business meetings. The purpose of this study was to conduct a review of policies or codes of conduct pertaining to the use of laptops and PDAs in meetings. The investigation included academic literature, policy searches in the public domain of the Internet, as well as personal contact with target industries (large corporations – N=1000 + employees). The results highlight the dearth of policy and codes of conducts pertaining to the use of laptops and PDA’s in business meetings. Consequently, given the growing interdependence between mobile technologies and the contemporary workplace, there exists an opportunity for communication professionals to further research and develop policy and codes of conduct in this area. Implications for corporate communication policies and practices are also discussed.
Resumo:
Genomic and proteomic analyses have attracted a great deal of interests in biological research in recent years. Many methods have been applied to discover useful information contained in the enormous databases of genomic sequences and amino acid sequences. The results of these investigations inspire further research in biological fields in return. These biological sequences, which may be considered as multiscale sequences, have some specific features which need further efforts to characterise using more refined methods. This project aims to study some of these biological challenges with multiscale analysis methods and stochastic modelling approach. The first part of the thesis aims to cluster some unknown proteins, and classify their families as well as their structural classes. A development in proteomic analysis is concerned with the determination of protein functions. The first step in this development is to classify proteins and predict their families. This motives us to study some unknown proteins from specific families, and to cluster them into families and structural classes. We select a large number of proteins from the same families or superfamilies, and link them to simulate some unknown large proteins from these families. We use multifractal analysis and the wavelet method to capture the characteristics of these linked proteins. The simulation results show that the method is valid for the classification of large proteins. The second part of the thesis aims to explore the relationship of proteins based on a layered comparison with their components. Many methods are based on homology of proteins because the resemblance at the protein sequence level normally indicates the similarity of functions and structures. However, some proteins may have similar functions with low sequential identity. We consider protein sequences at detail level to investigate the problem of comparison of proteins. The comparison is based on the empirical mode decomposition (EMD), and protein sequences are detected with the intrinsic mode functions. A measure of similarity is introduced with a new cross-correlation formula. The similarity results show that the EMD is useful for detection of functional relationships of proteins. The third part of the thesis aims to investigate the transcriptional regulatory network of yeast cell cycle via stochastic differential equations. As the investigation of genome-wide gene expressions has become a focus in genomic analysis, researchers have tried to understand the mechanisms of the yeast genome for many years. How cells control gene expressions still needs further investigation. We use a stochastic differential equation to model the expression profile of a target gene. We modify the model with a Gaussian membership function. For each target gene, a transcriptional rate is obtained, and the estimated transcriptional rate is also calculated with the information from five possible transcriptional regulators. Some regulators of these target genes are verified with the related references. With these results, we construct a transcriptional regulatory network for the genes from the yeast Saccharomyces cerevisiae. The construction of transcriptional regulatory network is useful for detecting more mechanisms of the yeast cell cycle.
Resumo:
Monitoring and assessing environmental health is becoming increasingly important as human activity and climate change place greater pressure on global biodiversity. Acoustic sensors provide the ability to collect data passively, objectively and continuously across large areas for extended periods of time. While these factors make acoustic sensors attractive as autonomous data collectors, there are significant issues associated with large-scale data manipulation and analysis. We present our current research into techniques for analysing large volumes of acoustic data effectively and efficiently. We provide an overview of a novel online acoustic environmental workbench and discuss a number of approaches to scaling analysis of acoustic data; collaboration, manual, automatic and human-in-the loop analysis.
Resumo:
Background The vast sequence divergence among different virus groups has presented a great challenge to alignment-based analysis of virus phylogeny. Due to the problems caused by the uncertainty in alignment, existing tools for phylogenetic analysis based on multiple alignment could not be directly applied to the whole-genome comparison and phylogenomic studies of viruses. There has been a growing interest in alignment-free methods for phylogenetic analysis using complete genome data. Among the alignment-free methods, a dynamical language (DL) method proposed by our group has successfully been applied to the phylogenetic analysis of bacteria and chloroplast genomes. Results In this paper, the DL method is used to analyze the whole-proteome phylogeny of 124 large dsDNA viruses and 30 parvoviruses, two data sets with large difference in genome size. The trees from our analyses are in good agreement to the latest classification of large dsDNA viruses and parvoviruses by the International Committee on Taxonomy of Viruses (ICTV). Conclusions The present method provides a new way for recovering the phylogeny of large dsDNA viruses and parvoviruses, and also some insights on the affiliation of a number of unclassified viruses. In comparison, some alignment-free methods such as the CV Tree method can be used for recovering the phylogeny of large dsDNA viruses, but they are not suitable for resolving the phylogeny of parvoviruses with a much smaller genome size.
Resumo:
Summary This systematic review demonstrates that vitamin D supplementation does not have a significant effect on muscle strength in vitamin D replete adults. However, a limited number of studies demonstrate an increase in proximal muscle strength in adults with vitamin D deficiency. Introduction The purpose of this study is to systematically review the evidence on the effect of vitamin D supplementation on muscle strength in adults. Methods A comprehensive systematic database search was performed. Inclusion criteria included randomised controlled trials (RCTs) involving adult human participants. All forms and doses of vitamin D supplementation with or without calcium supplementation were included compared with placebo or standard care. Outcome measures included evaluation of strength. Outcomes were compared by calculating standardised mean difference (SMD) and 95% confidence intervals. Results Of 52 identified studies, 17 RCTs involving 5,072 participants met the inclusion criteria. Meta-analysis showed no significant effect of vitamin D supplementation on grip strength (SMD −0.02, 95%CI −0.15,0.11) or proximal lower limb strength (SMD 0.1, 95%CI −0.01,0.22) in adults with 25(OH)D levels >25 nmol/L. Pooled data from two studies in vitamin D deficient participants (25(OH)D <25 nmol/L) demonstrated a large effect of vitamin D supplementation on hip muscle strength (SMD 3.52, 95%CI 2.18, 4.85). Conclusion Based on studies included in this systematic review, vitamin D supplementation does not have a significant effect on muscle strength in adults with baseline 25(OH)D >25 nmol/L. However, a limited number of studies demonstrate an increase in proximal muscle strength in adults with vitamin D deficiency. Keywords Muscle – Muscle fibre – Strength – Vitamin D