898 resultados para high-bandwidth LCL filter
Resumo:
The relentlessly increasing demand for network bandwidth, driven primarily by Internet-based services such as mobile computing, cloud storage and video-on-demand, calls for more efficient utilization of the available communication spectrum, as that afforded by the resurging DSP-powered coherent optical communications. Encoding information in the phase of the optical carrier, using multilevel phase modulationformats, and employing coherent detection at the receiver allows for enhanced spectral efficiency and thus enables increased network capacity. The distributed feedback semiconductor laser (DFB) has served as the near exclusive light source powering the fiber optic, long-haul network for over 30 years. The transition to coherent communication systems is pushing the DFB laser to the limits of its abilities. This is due to its limited temporal coherence that directly translates into the number of different phases that can be imparted to a single optical pulse and thus to the data capacity. Temporal coherence, most commonly quantified in the spectral linewidth Δν, is limited by phase noise, result of quantum-mandated spontaneous emission of photons due to random recombination of carriers in the active region of the laser.
In this work we develop a generically new type of semiconductor laser with the requisite coherence properties. We demonstrate electrically driven lasers characterized by a quantum noise-limited spectral linewidth as low as 18 kHz. This narrow linewidth is result of a fundamentally new laser design philosophy that separates the functions of photon generation and storage and is enabled by a hybrid Si/III-V integration platform. Photons generated in the active region of the III-V material are readily stored away in the low loss Si that hosts the bulk of the laser field, thereby enabling high-Q photon storage. The storage of a large number of coherent quanta acts as an optical flywheel, which by its inertia reduces the effect of the spontaneous emission-mandated phase perturbations on the laser field, while the enhanced photon lifetime effectively reduces the emission rate of incoherent quanta into the lasing mode. Narrow linewidths are obtained over a wavelength bandwidth spanning the entire optical communication C-band (1530-1575nm) at only a fraction of the input power required by conventional DFB lasers. The results presented in this thesis hold great promise for the large scale integration of lithographically tuned, high-coherence laser arrays for use in coherent communications, that will enable Tb/s-scale data capacities.
Resumo:
We theoretically demonstrate the selective enhancement of high-order harmonic generation (HHG) in two-color laser fields consisting of a single-cycle fundamental wave (800 nm wavelength) and a multicycle subharmonic wave (2400 nm wavelength). By performing time-frequency analyses based on a single-active-electron model, we reveal that such an enhancement is a result of the modified electron trajectories in the two-color field. Furthermore, we show that selectively enhanced HHG gives rise to a bandwidth-controllable extreme ultraviolet supercontinuum in the plateau region, facilitating the generation of intense single isolated attosecond pulses.
Resumo:
New parasitic lasing suppression techniques are developed and high gain amplification is demonstrated in a petawatt level Ti:sapphire amplifier based on the chirped pulse amplification (CPA) scheme. Cladding the large aperture Ti: sapphire with refractive-index matched liquid doped with absorber suppresses the transverse lasing. The acousto-optic programmable dispersive filter (AOPDF) is used to realize side-lobe suppression in the temporal profile of the compressed pulse. The 800 nm laser output with peak power of 0.89 PW and pulse width of 29.0 fs is demonstrated. (c) 2007 Optical Society of America.
Resumo:
A novel fiber Bragg grating temperature sensor is proposed and experimentally demonstrated with a long-period grating as a linear response edge filter to convert wavelength into intensity-encoded information for interrogation. The sensor is embedded into an aluminum substrate with a larger coefficient of thermal expansion to enhance its temperature sensitivity. A large dynamic range of 110 degreesC and a high resolution of 0.02 degreesC are obtained in the experiments. The technique can be used for multiplexed measurements with one broadband source and one long-period grating, and therefore is low Cost. (C) 2004 Society of PhotoOptical Instrumentation Engineers.
Resumo:
In the sinusoidal phase modulating interferometer technique, the high-speed CCD is necessary to detect the interference signals. The reason of ordinary CCD's low frame rate was analyzed, and a novel high-speed image sensing technique with adjustable frame rate based on ail ordinary CCD was proposed. And the principle of the image sensor was analyzed. When the maximum frequency and channel bandwidth were constant, a custom high-speed sensor was designed by using the ordinary CCD under the control of the special driving circuit. The frame rate of the ordinary CCD has been enhanced by controlling the number of pixels of every frame; therefore, the ordinary of CCD can be used as the high frame rate image sensor with small amount of pixels. The multi-output high-speed image sensor has the deficiencies of low accuracy, and high cost, while the high-speed image senor with small number of pixels by using this technique can overcome theses faults. The light intensity varying with time was measured by using the image sensor. The frame rate was LIP to 1600 frame per second (f/s), and the size of every frame and the frame rate were adjustable. The correlation coefficient between the measurement result and the standard values were higher than 0.98026, and the relative error was lower than 0.53%. The experimental results show that this sensor is fit to the measurements of sinusoidal phase modulating interferometer technique. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Estimation of the far-field centre is carried out in beam auto-alignment. In this paper, the features of the far-field of a square beam are presented. Based on these features, a phase-only matched filter is designed, and the algorithm of centre estimation is developed. Using the simulated images with different kinds of noise and the 40 test images that are taken in sequence, the accuracy of this algorithm is estimated. Results show that the error is no more than one pixel for simulated noise images with a 99% probability, and the stability is restricted within one pixel for test images. Using the improved algorithm, the consumed time is reduced to 0.049 s.
Resumo:
Phase locking of two fiber lasers is demonstrated experimentally by the use of a self-imaging resonator with a spatial filter. The high-contrast interference strips of the coherent beam profile are observed. The coherent output power of the fiber array exceeds 12W and the efficiency of coherent power combination is 88% with pump power of 60W. The whole system operates quite stably and, for the spatial filter, no thermal effects have been observed, which means that we can increase the coherent output power further by this method. (c) 2006 Optical Society of America
Resumo:
(100 - x)TeO2 - xNb(2)O(5) (x=5-20) mobic tellurite glasses doped with 0.5 mol.% Er2O3 were synthesized, and their thermal, mechanical, and spectroscopic properties were measured and compared to the properties of the typical 75TeO(2)-20ZnO-5Na(2)O (TZN) tellurite glass. The refractive index (n(d)), density (p), and glass transition temperature (T-g) of bulk glasses increase with the Nb2O5 content. The Vickers microhardness (H-v) of bulk glass in niobic tellurite glasses also increases with the Nb2O5 content. The values (2.5-3.2 GPa) of H, in the niobic tellurite glasses are 47-88% larger than that (1.7 GPa) in TZN glass. The effect of Nb2O5 content on absorption spectra, the Judd-Ofelt parameters Omega(t) (t = 2, 4, 6), fluorescence spectra and the lifetimes of Er3+ :I-13/2 level were also investigated, and the stimulated emission crosssection was calculated from McCumber theory. With increasing Nb2O5 content in the glass composition, the Omega(t) (t = 2, 4, 6) parameters, fluorescence full width at half maximum (FWHM) Of I-13/2 of Er3+ increase, while the I-4(13/2) lifetimes of Er3+ decreases. Compared with TZN glass, the gain bandwidth properties of Er3+-doped TeO2-Nb2O5 glass is much larger than in tellurite glass based TeO2-ZnO-Na2O system, bismush-based glass, germanate, and silicate glasses, which indicates that TeO2-Nb2O5 glasses are better choice as a practical available host material for broadband Er3+-doped amplifier. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The single-sided and dual-sided high reflective mirrors were deposited with ion-beam sputtering (IBS). When the incident light entered with 45 degrees, the reflectance of p-polarized light at 1064 nm exceeded 99.5%. Spectrum was gained by spectrometer and weak absorption of coatings was measured by surface thermal lensing (STL) technique. Laser-induced damage threshold (LIDT) was determined and the damage morphology was observed with Lecia-DMRXE microscope simultaneously. The profile of coatings was measured with Mark III-GPI digital interferometer. It was found that the reflectivity of mirror exceeded 99.9% and its absorption was as low as 14 ppm. The reflective bandwidth of the dual-sided sample was about 43 nm wider than that of single-sided sample, and its LIDT was as high as 28 J/cm2, which was 5 J/cm2 higher than that of single-sided sample. Moreover, the profile of dual-sided sample was better than that of substrate without coatings.
Resumo:
Glancing angle deposition is a novel method to prepare graded index coatings. By using this method and physical vapour deposition, ZrO2 is used to engineer graded index filter on BK7 glass substrate. Controlling the deposition rate and the periodic oscillation of oblique angle of deposited material, a 10-period graded index ZrO2 filter with high reflection near 532 nm and high transmittance at wavelength 1064 nm is fabricated. The causes of difference between the theoretical and experimental results are discussed in detail. The material properties and electron gun nonlinearity are possibly the main origins of the difference, which result in the variations in both thickness control and deposition rate of the Elm material.
Resumo:
We present designs of high-efficiency compression grating based on total internal reflection (TIR) for picosecond pulse laser at 1053 nm. The setup is devised by directly etching gratings into the bottom side of a prism so that light can successfully enter (or exit) the compression grating. Dependence of the -1 order diffraction efficiencies on the constructive parameters is analyzed for TE- and TM-polarized incident light at Littrow angle by using Fourier modal method in order to obtain optimal grating structure. The electric field enhancement within the high-efficiency TIR gratings is regarded as another criterion to optimize the structure of the TIR gratings. With the criterion of high diffraction efficiency, low electric field enhancement and sufficient manufacturing latitude, TIR compression gratings with optimized constructive parameters are obtained for TE- and TM-polarized incident light, respectively. The grating for TE-polarized light exhibits diffraction efficiencies higher than 0.95 within 23 nm bandwidth and relatively low square of electric field enhancement ratio of 5.7. Regardless of the internal electric field enhancement, the grating for TM-polarized light provides diffraction efficiencies higher than 0.95 within 42 nm bandwidth. With compact structure, such TIR compression gratings made solely of fused silica should be of great interest for application to chirped pulse amplification (CPA) systems. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report on the design of a high diffraction efficiency multi-layer dielectric grating with wide incident angle and broad bandwidth for 800 nm. The optimized grating can achieve > 95% diffraction efficiency in the first order at an incident angle of 5 degrees from Littrow and a wavelength from 770nm to 830 nm, with peak diffraction efficiency of > 99.5% at 800 nm. The electric field distribution of the optimized multi-layer dielectric grating within the gratings ridge is 1.3 times enhancement of the incidence light, which presents potential high laser resistance ability. Because of its high-efficiency, wide incident, broad bandwidth and potential high resistance ability, the multi-layer dielectric grating should have practical application in Ti:sapphire laser systems.
Resumo:
A normal-incidence nonpolarizing guided-mode resonance filter is designed. There are two waveguide layers and one grating layer in the filter. By adjusting the distance between the two waveguide layers, the same resonance wavelength for both TE and TM polarization can be achieved. An antireflection design method is also used to decrease the sideband reflection of the filter. The results show that the filter has high reflection, more than 99.9% at 500 nm, and the FW-HMs of TE- and TM-polarized light are 2.16 and 0.15 nm, respectively. (C) 2009 Optical Society of America
Resumo:
TiO2 single layers and TiO2/SiO2 high reflectors (HR) are prepared by electron beam evaporation at different TiO2 deposition rates. It is found that the changes of properties of TiO2 films with the increase of rate, such as the increase of refractive index and extinction coefficient and the decrease of physical thickness, lead to the spectrum shift and reflectivity bandwidth broadening of HR together with the increase of absorption and decrease of laser-induced damage threshold. The damages are found of different morphologies: a shallow pit to a seriously delaminated and deep crater, and the different amorphous-to-anatase-to-rutile phase transition processes detected by Raman study. The frequency shift of Raman vibration mode correlates with the strain in. film. Energy dispersive X-ray analysis reveals that impurities and non-stoichiometric defects are two absorption initiations resulting to the laser-induced transformation. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
The well known 'crystal seed' theory is first applied in this work to prepare TiO2 film: a high refractive index rutile TiO2 film is grown by electron beam evaporation on the rutile seed formed by 1100 degrees C annealing. The average n is larger than 2.4, by far the highest in all the authors' TiO2 films. The films are characterised by optical properties, microstructure and surface morphologies. It is found that the refractive index shows positive relation with the crystal structure, grain size, and packing density and roughness of the film. The film has lower density of granularity and nodule defects on the surface than those of the film deposited by magnetron sputtering. The result shows attractive application in complex filter and laser coatings.