958 resultados para gonadorelin agonist


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asthma is a chronic inflammatory airways disease in which respiratory viral infections frequently trigger exacerbations. Current treatment of asthma with combinations of inhaled corticosteroids and long acting beta2 agonists improves asthma control and reduces exacerbations but what impact this might have on innate anti-viral immunity is unclear. We investigated the in vitro effects of asthma drugs on innate anti-viral immunity. Peripheral blood mononuclear cells (PBMC) from healthy and asthmatic donors were cultured for 24 hours with the Toll-like receptor 7 agonist, imiquimod, or rhinovirus 16 (RV16) in the presence of budesonide and/or formoterol. Production of proinflammatory cytokines and expression of anti-viral intracellular signalling molecules were measured by ELISA and RT-PCR respectively. In PBMC from healthy donors, budesonide alone inhibited IP-10 and IL-6 production induced by imiquimod in a concentration-dependent manner and the degree of inhibition was amplified when budesonide and formoterol were used in combination. Formoterol alone had little effect on these parameters, except at high concentrations (10−6 M) when IL-6 production increased. In RV16 stimulated PBMC, the combination of budesonide and formoterol inhibited IFNα and IP-10 production in asthmatic as well as healthy donors. Combination of budesonide and formoterol also inhibited RV16-stimulated expression of the type I IFN induced genes myxovirus protein A and 2′, 5′ oligoadenylate synthetise. Notably, RV16 stimulated lower levels of type Myxovirus A and oligoadenylate synthase in PBMC of asthmatics than control donors. These in vitro studies demonstrate that combinations of drugs commonly used in asthma therapy inhibit both early pro-inflammatory cytokines and key aspects of the type I IFN pathway. These findings suggest that budesonide and formoterol curtail excessive inflammation induced by rhinovirus infections in patients with asthma, but whether this inhibits viral clearance in vivo remains to be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Agonists of glucagon-like peptide-1 (GLP-1) receptors are used in the treatment of type 2 diabetes. Albiglutide is a new long acting GLP-1 receptor agonist being developed for once-weekly use. Areas covered: This evaluation is of 2 clinical trials in the HARMONY clinical trials series. HARMONY 3 compares albiglutide to sitagliptin and glimepiride in subjects with type 2 diabetes poorly controlled with metformin, and HARMONY 6 compares albiglutide to insulin lispro in subjects poorly controlled with slow/medium release preparations of insulin. Expert opinion: Both studies showed that albiglutide lowered HbA1c, and had advantages over its comparator drugs. However, questions remain about the safety of albiglutide. Albiglutide is not being used in subjects with a history of thyroid cancer, as it is not known whether this is a rare adverse effect with albiglutide. Also, the safety of albiglutide in subjects with type 2 diabetes and high cardiovascular risk is unknown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type 2 diabetes remains an escalating world-wide problem, despite a range of treatments. The revelation that insulin secretion is under the control of a gut hormone, glucagon-like peptide 1 (GLP-1), led to a new paradigm in the management of type 2 diabetes. Liraglutide is a long acting GLP-1 receptor agonist used in the treatment of type 2 diabetes. The review considers the clinical trials with liraglutide. There are many comparator trials between liraglutide and other medicines for the treatment of type 2 diabetes, and these trials have shown that liraglutide lowers HbA1c and body weight, and is well tolerated. A large cardiovascular safety trial with liraglutide is presently being undertaken. After 10 years of clinical trials with liraglutide, we do not know whether liraglutide has cardiovascular safety in subjects with type 2 diabetes and high cardiovascular risk. Although this is not a requirement for registration by the Food and Drug Administration (FDA), in my opinion, they should reconsider this. We also do not presently know whether liraglutide has any beneficial effects on clinical cardiovascular outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work was designed to study certain aspects of the endocrine regulation of gonadotropin-releasing hormone receptor (GnRH-R) in the pituitary of the teleost fish tilapia. A GnRH-R was cloned from the pituitary of hybrid tilapia (taGnRH-R) and was identified as a typical seven-transmembrane receptor. Northern blot analysis revealed a single GnRH-R transcript in the pituitary of approximately 2.3 kilobases. The taGnRH-R mRNA levels were significantly higher in females than in males. Injection of the salmon GnRH analog (sGnRHa; 5–50 μg/kg) increased the steady-state levels of taGnRH-R mRNA, with the highest response recorded at 25 μg/kg and at 36 h. At the higher dose of sGnRHa (50 μg/kg), taGnRH-R transcript appeared to be down-regulated. Exposure of tilapia pituitary cells in culture to graded doses (0.1–100 nM) of seabream (sbGnRH = GnRH I), chicken II (cGnRH II), or salmon GnRH (sGnRH = GnRH III) resulted in a significant increase in taGnRH-R mRNA levels. The highest levels of both LH release and taGnRH-R mRNA levels were recorded after exposure to cGnRH II and the lowest after exposure to sbGnRH. The dopamine-agonist quinpirole suppressed LH release and mRNA levels of taGnRH-R, indicating an inhibitory effect on GnRH-R synthesis. Collectively, these data provide evidence that GnRH in tilapia can up- regulate, whereas dopamine down-regulates, taGnRH-R mRNA levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a study towards elucidating the role of aromatases during puberty in female grey mullet, the cDNAs of the brain (muCyp19b) and ovarian (muCyp19a) aromatase were isolated by RT-PCR and their relative expression levels were determined by quantitative real-time RT-PCR. The muCyp19a ORF of 1515 bp encoded 505 predicted amino acid residues, while that of muCyp19b was 1485 bp and encoded 495 predicted amino acid residues. The expression level of muCyp19b significantly increased in the brain as puberty advanced; however, its expression level in the pituitary increased only slightly with pubertal development. In the ovary, the muCyp19a expression level markedly increased as puberty progressed. The promoter regions of the two genes were also isolated and their functionality evaluated in vitro using luciferase as the reporter gene. The muCyp19a promoter sequence (650 bp) contained a consensus TATA box and putative transcription factor binding sites, including two half EREs, an SF-1, an AhR/Arnt, a PR and two GATA-3s. The muCyp19b promoter sequence (2500 bp) showed consensus TATA and CCAAT boxes and putative transcription binding sites, namely: a PR, an ERE, a half ERE, a SP-1, two GATA-binding factor, one half GATA-1, two C/EBPs, a GRE, a NFkappaB, three STATs, a PPAR/RXR, an Ahr/Arnt and a CRE. Basal activity of serially deleted promoter constructs transiently transfected into COS-7, [alpha]T3 and TE671 cells demonstrated the enhancing and silencing roles of the putative transcription factor binding sites. Quinpirole, a dopamine agonist, significantly reduced the promoter activity of muCyp19b in TE671. The results suggest tissue-specific regulation of the muCyp19 genes and a putative alternative promoter for muCyp19b.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Gamma-aminobutyric acid A (GABAA) receptors (GABAARs), which are ionotropic receptors involving chloride channels, have been identified in various neural (e.g., mouse retinal ganglion cells) and nonneural cells (e.g., mouse lens epithelial cells) regulating the intracellular calcium concentration ([Ca(2+)]i). GABAAR β-subunit protein has been isolated in the cultured human and rat RPE, and GABAAα1 and GABAAρ1 mRNAs and proteins are present in the chick RPE. The purpose of this study was to investigate the expression of GABAAα1 and GABAAρ1, two important subunits in forming functional GABAARs, in the cultured human RPE, and further to explore whether altering receptor activation modifies [Ca(2+)]i. Methods: Human RPE cells were separately cultured from five donor eye cups. Real-time PCR, western blots, and immunofluorescence were used to test for GABAAα1 and GABAAρ1 mRNAs and proteins. The effects of the GABAAR agonist muscimol, antagonist picrotoxin, or the specific GABAAρ antagonist 1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA) on [Ca(2+)]i in cultured human RPE were demonstrated using Fluo3-AM. Results: Both GABAAα1 and GABAAρ1 mRNAs and proteins were identified in cultured human RPE cells; antibody staining was mainly localized to the cell membrane and was also present in the cytoplasm but not in the nucleus. Muscimol (100 μM) caused a transient increase of the [Ca(2+)]i in RPE cells regardless of whether Ca(2+) was added to the buffer. Muscimol-induced increases in the [Ca(2+)]i were inhibited by pretreatment with picrotoxin (300 μM) or TPMPA (500 μM). Conclusions: GABAAα1 and GABAAρ1 are expressed in cultured human RPE cells, and GABAA agents can modify [Ca(2+)]i.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose – Psychological and epidemiological literature suggests that the built environment plays both causal and therapeutic roles in schizophrenia, but what are the implications for designers? The purpose of this paper is to focus on the role the built environment plays in psycho‐environmental dynamics, in order that negative effects can be avoided and beneficial effects emphasised in architectural design. Design/methodology/approach – The approach taken is a translational exploration of the dynamics between the built environment and psychotic illness, using primary research from disciplines as diverse as epidemiology, neurology and psychology. Findings – The built environment is conceived as being both an agonist and as an antagonist for the underlying processes that present as psychosis. The built environment is implicated through several means, through the opportunities it provides. These may be physical, narrative, emotional, hedonic or personal. Some opportunities may be negative, and others positive. The built environment is also an important source of unexpected aesthetic stimulation, yet in psychotic illnesses, aesthetic sensibilities characteristically suffer from deterioration. Research limitations/implications – The findings presented are based on research that is largely translated from very different fields of enquiry. Whilst findings are cogent and logical, much of the support is correlational rather than empirical. Social implications – The WHO claims that schizophrenia destroys 24 million lives worldwide, with an exponential effect on human and financial capital. Because evidence implicates the built environment, architectural and urban designers may have a role to play in reducing the human costs wrought by the illness. Originality/value – Never before has architecture been so explicitly implicated as a cause of mental illness. This paper was presented to the Symposium of Mental Health Facility Design, and is essential reading for anyone involved in designing for improved mental health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sleep is governed by a homeostatic process in which the duration and quality of previous wake regulate the subsequent sleep. Active wakefulness is characterized with high frequency cortical oscillations and depends on stimulating influence of the arousal systems, such as the cholinergic basal forebrain (BF), while cessation of the activity in the arousal systems is required for slow wave sleep (SWS) to occur. The site-specific accumulation of adenosine (a by-product of ATP breakdown) in the BF during prolonged waking /sleep deprivation (SD) is known to induce sleep, thus coupling energy demand to sleep promotion. The adenosine release in the BF is accompanied with increases in extracellular lactate and nitric oxide (NO) levels. This thesis was aimed at further understanding the cellular processes by which the BF is involved in sleep-wake regulation and how these processes are affected by aging. The BF function was studied simultaneously at three levels of organization: 1) locally at a cellular level by measuring energy metabolites 2) globally at a cortical level (the out-put area of the BF) by measuring EEG oscillations and 3) at a behavioral level by studying changes in vigilance states. Study I showed that wake-promoting BF activation, particularly with glutamate receptor agonist N-methyl-D-aspatate (NMDA), increased extracellular adenosine and lactate levels and led to a homeostatic increase in the subsequent sleep. Blocking NMDA activation during SD reduced the high frequency (HF) EEG theta (7-9 Hz) power and attenuated the subsequent sleep. In aging, activation of the BF during SD or experimentally with NMDA (studies III, IV), did not induce lactate or adenosine release and the increases in the HF EEG theta power during SD and SWS during the subsequent sleep were attenuated as compared to the young. These findings implicate that increased or continuous BF activity is important for active wake maintenance during SD as well as for the generation of homeostatic sleep pressure, and that in aging these mechanisms are impaired. Study II found that induction of the inducible NO synthase (iNOS) during SD is accompanied with activation of the AMP-activated protein kinase (AMPK) in the BF. Because decreased cellular energy charge is the most common cause for AMPK activation, this finding implicates that the BF is selectively sensitive to the metabolic demands of SD as increases were not found in the cortex. In aging (study III), iNOS expression and extracellular levels of NO and adenosine were not significantly increased during SD in the BF. Furthermore, infusion of NO donor into the BF did not lead to sleep promotion as it did in the young. These findings indicated that the NO (and adenosine) mediated sleep induction is impaired in aging and that it could at least partly be due to the reduced sensitivity of the BF to sleep-inducing factors. Taken together, these findings show that reduced sleep promotion by the BF contributes to the attenuated homeostatic sleep response in aging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

γ-aminobutyric acid (GABA) is the main inhibitory transmitter in the nervous system and acts via three distinct receptor classes: A, B, and C. GABAC receptors are ionotropic receptors comprising ρ subunits. In this work, we aimed to elucidate the expression of ρ subunits in the postnatal brain, the characteristics of ρ2 homo-oligomeric receptors, and the function of GABAC receptors in the hippocampus. In situ hybridization on rat brain slices showed ρ2 mRNA expression from the newborn in the superficial grey layer of the superior colliculus, from the first postnatal week in the hippocampal CA1 region and the pretectal nucleus of the optic tract, and in the adult dorsal lateral geniculate nucleus. Quantitative RT-PCR revealed expression of all three ρ subunits in the hippocampus and superior colliculus from the first postnatal day. In the hippocampus, ρ2 mRNA expression clearly dominated over ρ1 and ρ3. GABAC receptor protein expression was confirmed in the adult hippocampus, superior colliculus, and dorsal lateral geniculate nucleus by immunohistochemistry. From the selective distribution of ρ subunits, GABAC receptors may be hypothesized to be specifically involved in aspects of visual image motion processing in the rat brain. Although previous data had indicated a much higher expression level for ρ2 subunit transcripts than for ρ1 or ρ3 in the brain, previous work done on Xenopus oocytes had suggested that rat ρ2 subunits do not form functional homo-oligomeric GABAC receptors but need ρ1 or ρ3 subunits to form hetero-oligomers. Our results demonstrated, for the first time, that HEK 293 cells transfected with ρ2 cDNA displayed currents in whole-cell patch-clamp recordings. Homomeric rat ρ2 receptors had a decreased sensitivity to, but a high affinity for picrotoxin and a marked sensitivity to the GABAC receptor agonist CACA. Our results suggest that ρ2 subunits may contribute to brain function, also in areas not expressing other ρ subunits. Using extracellular electrophysiological recordings, we aimed to study the effects of the GABAC receptor agonists and antagonists on responses of the hippocampal neurons to electrical stimulation. Activation of GABAC receptors with CACA suppressed postsynaptic excitability and the GABAC receptor antagonist TPMPA inhibited the effects of CACA. Next, we aimed to display the activation of the GABAC receptors by synaptically released GABA using intracellular recordings. GABA-mediated long-lasting depolarizing responses evoked by high-frequency stimulation were prolonged by TPMPA. For weaker stimulation, the effect of TPMPA was enhanced after GABA uptake was inhibited. Our data demonstrate that GABAC receptors can be activated by endogenous synaptic transmitter release following strong stimulation or under conditions of reduced GABA uptake. The lack of GABAC receptor activation by less intensive stimulation under control conditions suggests that these receptors are extrasynaptic and activated via spillover of synaptically released GABA. Taken together with the restricted expression pattern of GABAC receptors in the brain and their distinctive pharmacological and biophysical properties, our findings supporting extrasynaptic localization of these receptors raise interesting possibilities for novel pharmacological therapies in the treatment of, for example, epilepsy and sleep disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glaucoma is a multifactorial long-term ocular neuropathy associated with progressive loss of the visual field, retinal nerve fiber structural abnormalities and optic disc changes. Like arterial hypertension it is usually a symptomless disease, but if left untreated leads to visual disability and eventual blindness. All therapies currently used aim to lower intraocular pressure (IOP) in order to minimize cell death. Drugs with new mechanisms of action could protect glaucomatous eyes against blindness. Renin-angiotensin system (RAS) is known to regulate systemic blood pressure and compounds acting on it are in wide clinical use in the treatment of hypertension and heart failure but not yet in ophthalmological use. There are only few previous studies concerning intraocular RAS, though evidence is accumulating that drugs antagonizing RAS can also lower IOP, the only treatable risk factor in glaucoma. The main aim of this experimental study was to clarify the expression of the renin-angiotensin system in the eye tissues and to test its potential oculohypotensive effects and mechanisms. In addition, the possible relationship between the development of hypertension and IOP was evaluated in animal models. In conclusion, a novel angiotensin receptor type (Mas), as well as ACE2 enzyme- producing agonists for Mas, were described for the first time in the eye structures participating in the regulation of IOP. In addition, a Mas receptor agonist significantly reduced even normal IOP. The effect was abolished by a specific receptor antagonist. Intraocular, local RAS would thus to be involved in the regulation of IOP, probably even more in pathological conditions such as glaucoma though there was no unambiguous relationship between arterial and ocular hypertension. The findings suggest the potential as antiglaucomatous drugs of agents which increase ACE2 activity and the formation of angiotensin (1-7), or activate Mas receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AMPA receptors are an important class of ionotropic glutamate receptors which participate in fast excitatory synaptic transmission in most brain areas. They have a pivotal role in adjustment of cell membrane excitability as their cell membrane expression levels is altered in brain physiology such as in learning and memory formation. AMPA receptor function and trafficking is regulated by several proteins, such as transmembrane AMPA receptor regulatory proteins (TARPs). NMDA-type glutamate receptors are important target molecules of ethanol. The role of AMPA receptors in the actions of ethanol has not been clarified as thoroughly. Furthermore, the regulation of AMPA receptor synthesis and their possible adaptation in neurons with altered inhibitory mechanisms are poorly understood. In this thesis work AMPA receptor pharmacology, trafficking and synaptic localization was studied using patch-clamp electrophysiology. Both native and recombinant AMPA receptors were studied. Hippocampal slices from transgenic Thy1alfa6 mice with altered inhibition were used to study adaptation of AMPA receptors. Ethanol was found to inhibit AMPA receptor function by increasing desensitization of the receptor, as the steady-state current was inhibited more than the peak current. Ethanol inhibition was reduced when cyclothiazide was used to block desensitization and when non-desensitizing mutant receptors were studied. Ethanol also increased the rate of desensitization, which was increased further by the coexpression of TARP-proteins. We found that the agonist binding capability is important for trafficking AMPA receptors from endoplasmic reticulum to the cell membrane. TARP rescues the surface expression of non-binding AMPA receptor mutants in HEK293 cells, but not in native neurons. Studies with Thy1alfa6 mice revealed that decreased inhibition decrease AMPA receptor mediated excitation keeping the neurotransmission in balance. Thy1alfa6 mice also had lower sensitivity to electroshock convulsions, presumably due to the decreased AMPA receptor function. The results suggest that during alcohol intoxication ethanol may inhibit AMPA receptors by increasing the rate and the extent of desensitization. TARPs appear to enhance ethanol inhibition. TARPs also participate in trafficking of AMPA receptors upon their synthesis in the cell. AMPA receptors mediate also long-term adaptation to altered neuronal excitability, which adds to their well-known role in synaptic plasticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nuclear receptor (NR) superfamily is comprised of receptors for small lipopfilic ligands such as steroid hormones, thyroid hormone, retinoids, and vitamin D. NRs are ligand-inducible transcription factors capable of both activating and repressing their target gene expression. They control a wide range of biological functions connected to growth, development, and homeostasis. In addition to the ligand-regulated receptors, the family includes a large group of receptors whose physiological ligands are unknown. These receptors are referred to as orphan NRs. Estrogen-related receptor gamma (ERRgamma) belongs to the ERR subfamily of orphan NRs together with the related ERRalpha and ERRbeta. ERRs share amino acid sequence homology with the classical estrogen receptors (ERs) but they are unable to bind natural estrogenic ligands. ERRgamma is expressed in several embryonic and adult tissues but its biological role is still largely unknown. ERRgamma activates reporter gene expression in transfected cells independently of added hormones implying that ERRgamma harbors constitutive activity. However, the intrinsic activity of ERRgamma can be inhibited by synthetic compounds such as the selective estrogen receptor modulator 4-hydroxytamoxifen (4-OHT). Ligands of NRs can act as agonists that activate transcription, as antagonists that prevent activation of transcription, or as inverse agonists that antagonize the constitutive transcriptional activity of receptor. Most of the synthetic ERRgamma ligands act as inverse agonists but recently, a synthetic ERRgamma agonist GSK4716 was identified. This demonstrates that it is possible to design and identify agonists for ERRgamma. Prior to this thesis work, the structural and functional characteristics of ERRgamma were largely unknown. The aim of this study was to define the functional requirements for ERRgamma-mediated transcriptional regulation and to examine the cross-talk between ERRgamma and other NRs. Due to the fact that natural physiological ligands of ERRgamma are unknown, another aim of this study was to seek new natural compounds that may affect transcriptional activity of ERRgamma. Plant-derived phytoestrogens have previously been shown to act as ligands for ERs and ERRalpha, and therefore the effects of these compounds were also studied on ERRgamma-mediated transcriptional regulation. This work demonstrated that ERRgamma-mediated transcriptional regulation was dependent on DNA-binding, dimerization and activation function-2. Heterodimerization with ERRalpha inhibited the transcriptional activity of ERRgamma. In addition to 4-OHT, another anti-estrogen, 4-hydroxytoremifene (4-OHtor), was identified as an inverse agonist of ERRgamma. Interestingly, ERRgamma activated transcription in the presence of 4-OHT and 4-OHtor on activator protein-1 binding sites. ERRgamma was found to interact with another orphan NR Nurr1 by repressing the ability of Nurr1 to activate transcription of the osteopontin gene. Transcriptional activity of ERRgamma was shown to be stimulated by the phytoestrogen equol. Structural model analysis and mutational experiments indicated that equol was able to bind to the ligand binding domain of ERRgamma. The growth inhibitory effect of ERRgamma on prostate cancer cells was found to be enhanced by equol. In summary, this study demonstrates that despite the absence of an endogenous physiological ligand, the activity of ERRgamma can be modulated in other ways such as dimerization with related receptors or by cross-talk with other transcription factors as well as by binding some synthetic or natural compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antinociceptive properties of oxycodone and its metabolites were studied in models of thermal and mechanical nociception and in the spinal nerve ligation (SNL) model of neuropathic pain in rats. Oxycodone induced potent antinociception after subcutaneous (s.c.) administration in all models of nociception used in rats compared with morphine, methadone and its enantiomers. In the SNL model of neuropathic pain in rats, oxycodone produced dose dependent antinociception after s.c. administration. The antinociceptive effects of s.c. oxycodone were antagonized by naloxone but not by nor-binaltorphimine (Nor-BNI) a selective κ-opioid receptor antagonist indicating that the antinociceptive properties of oxycodone are predominantly μ-opioid receptor-mediated. The antinociceptive activity of oxymorphone, noroxycodone, and noroxymorphone, oxidative metabolites of oxycodone, were studied to determine their role in the oxycodone-induced antinociception in the rat. Of the metabolites of oxycodone s.c. administration of oxymorphone produced potent thermal and mechanical antinociception. Noroxycodone had a poor antinociceptive effect and noroxymorphone was inactive. Oxycodone produced naloxone-reversible antinociception after intrathecal (i.t) administration with a poor potency compared with morphine and oxymorphone. This seems to be related to the low efficacy and potency of oxycodone to stimulate μ-opioid receptor activation in the spinal cord in μ-opioid receptor agonist-stimulated (GTP)γ[S] autoradiography, compared with morphine and oxymorphone. All metabolites studied were more potent than oxycodone after i.t. administration. I.t. noroxymorphone induced a significantly longer lasting antinociceptive effect compared with the other drugs studied. The role of cytochrome P450 (CYP) 2D6-mediated metabolites on the analgesic activity of oxycodone in humans was studied by blocking the CYP2D6-mediated metabolism of oxycodone with paroxetine. Paroxetine co-administration had no effect on the analgesic effect of oxycodone compared with placebo in chronic pain patients, indicating that oxycodone-induced analgesia and adverse-effects are not dependent of the CYP2D6-mediated metabolism in humans. Although oxycodone has many pharmacologically active metabolites, they seem to have an insignificant role in oxycodone-induced antinociception in humans and rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nurr1, NGFI-B and Nor1 (NR4A2, NR4A1 and NR4A3, respectively) belong to the NR4A subfamily of nuclear receptors. The NR4A receptors are orphan nuclear receptors which means that activating or repressing ligands for these receptors have not been found. NR4A expression is rapidly induced in response to various stimuli including growth factors and the parathyroid hormone (PTH). The studies concerning the NR4A receptors in the central nervous system have demonstrated that they have a major role in the development and function of the dopaminergic neurons of the midbrain and in regulating hypothalamus-pituitary-adrenal-axis. However, the peripheral functions of the NR4A family are largely unknown. Cultured mouse primary osteoblasts, a preosteoblastic cell line and several osteoblastic cell lines were used to investigate the role of NR4A receptors in osteoblasts. NR4A receptors were shown to directly bind to and activate the promoter of the osteopontin gene (OPN) in osteoblastic cells, thus regulating its expression. OPN is a major bone matrix protein expressed throughout the differentiation of preosteoblastic cells into osteoblasts. The activation of the OPN promoter was shown to be dependent on the activation function-1 located in the N-terminal part of Nurr1 and to occur in both monomeric and RXR heterodimeric forms of NR4A receptors. Furthermore, PTH was shown to upregulate OPN expression through the NR4A family. It was also demonstrated that the fibroblast growth factor-8b (FGF-8b) induces the expression of NR4A receptors in osteoblasts as immediate early genes. This induction involved phosphatidylinositol-3 kinase, protein kinase C, and mitogen activated protein kinase, which are all major pathways of FGF signalling. Nurr1 and NGFI-B were shown to induce the proliferation of preosteoblastic cells and to reduce their apoptosis. FGF-8b was shown to stimulate the proliferation of osteoblastic cells through the NR4A receptors. These results suggest that NR4A receptors have a role both in the differentiation of osteoblasts and in the proliferation and apoptosis of preosteoblast. The NR4A receptors were found to bind to the same response element on OPN as the members of the NR3B family of orphan receptors do. Mutual repression was observed between the NR4A receptors and the NR3B receptors. This repression was shown to be dependent on the DNA-binding domains of both receptor families, but to result neither from the competition of DNA binding nor from the competition for coactivators. As the repression was dependent on the relative expression levels of the NR4As and NR3Bs, it seems likely that the ratio of the receptors mediates their activity on their response elements. Rapid induction of the NR4As in response to various stimuli and differential expression of the NR3Bs can effectively control the gene activation by the NR4A receptors. NR4A receptors can bind DNA as monomers, and Nurr1 and NGFI-B can form permissive heterodimers with the retinoid X receptor (RXR). Permissive heterodimers can be activated with RXR agonists, unlike non-permissive heterodimers, which are formed by RXR and retinoic acid receptor or thyroid hormone receptor (RAR and TR, respectively). Non-permissive heterodimers can only be activated by the agonists of the heterodimerizing partner. The mechanisms behind differential response to RXR agonists have remained unresolved. As there are no activating or repressing ligands for the NR4A receptors, it would be important to find out, how they are regulated. Permissiviness of Nurr1/RXR heterodimers was linked to the N-terminal part of Nurr1 ligand-binding domain. This region has previously been shown to mediate the interaction between NRs and corepressors. Non-permissive RAR and TR, permissive Nurr1 and NGFI-B, and RXR were overexpressed with corepressors silencing mediator for retinoic acid and thyroid hormone receptors (SMRT), and with nuclear receptor corepressor in several cell lines. Nurr1 and NGFI-B were found to be repressed by SMRT. The interaction of RXR heterodimers with corepressors was weak in permissive heterodimers and much stronger in non-permissive heterodimers. Non-permissive heterodimers also released corepressors only in response to the agonist of the heterodimeric partner of RXR. In the permissive Nurr1/RXR heterodimer, however, SMRT was released following the treatment with RXR agonists. Corepressor release in response to ligands was found to differentiate permissive heterodimers from non-permissive ones. Corepressors were thus connected to the regulation of NR4A functions. In summary, the studies presented here linked the NR4A family of orphan nuclear receptors to the regulation of osteoblasts. Nurr1 and NGFI-B were found to control the proliferation and apoptosis of preosteoblasts. The studies also demonstrated that cross-talk with the NR3B receptors controls the activity of these orphan receptors. The results clarified the mechanism of permissiviness of RXR-heterodimers. New information was obtained on the regulation and functions of NR4A receptors, for which the ligands are unknown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alcohol dependence is a debilitating disorder with current therapies displaying limited efficacy and/or compliance. Consequently, there is a critical need for improved pharmacotherapeutic strategies to manage alcohol use disorders (AUDs). Previous studies have shown that the development of alcohol dependence involves repeated cycles of binge-like ethanol intake and abstinence. Therefore, we used a model of binge-ethanol consumption (drinking-in-the-dark) in mice to test the effects of compounds known to modify the activity of neurotransmitters implicated in alcohol addiction. From this, we have identified the FDA-approved antihypertensive drug pindolol, as a potential candidate for the management of AUDs. We show that the efficacy of pindolol to reduce ethanol consumption is enhanced following long-term (12-weeks) binge-ethanol intake, compared to short-term (4-weeks) intake. Furthermore, pindolol had no effect on locomotor activity or consumption of the natural reward sucrose. Because pindolol acts as a dual beta-adrenergic antagonist and 5-HT1A/1B partial agonist, we examined its effect on spontaneous synaptic activity in the basolateral amygdala (BLA), a brain region densely innervated by serotonin- and norepinephrine-containing fibres. Pindolol increased spontaneous excitatory post-synaptic current frequency in BLA principal neurons from long-term ethanol consuming mice but not naïve mice. Additionally, this effect was blocked by the 5-HT1A/1B receptor antagonist methiothepin, suggesting that altered serotonergic activity in the BLA may contribute to the efficacy of pindolol to reduce ethanol intake following long-term exposure. Although further mechanistic investigations are required, this study demonstrates the potential of pindolol as a new treatment option for AUDs that can be fast-tracked into human clinical studies.