618 resultados para farmacología
Resumo:
Corneal and anterior segment imaging techniques have become a crucial tool in the clinical practice of ophthalmology, with a great variety of applications, such as corneal curvature and pachymetric analysis, detection of ectatic corneal conditions, anatomical study of the anterior segment prior to phakic intraocular lens implantation, or densitometric analysis of the crystalline lens. From the Placido-based systems that allow only a characterization of the geometry of the anterior corneal surface to the Scheimpflug photography-based systems that provide a characterization of the cornea, anterior chamber, and crystalline lens, there is a great variety of devices with the capability of analyzing different anatomical parameters with very high precision. To date, Scheimpflug photography-based systems are the devices providing the more complete analysis of the anterior segment in a non-invasive way. More developments are required in anterior segment imaging technologies in order to improve the analysis of the crystalline lens structure as well as the ocular structures behind the iris in a non-invasive way when the pupil is not dilated.
Resumo:
Subpixel methods increase the accuracy and efficiency of image detectors, processing units, and algorithms and provide very cost-effective systems for object tracking. A recently proposed method permits micropixel and submicropixel accuracies providing certain design constraints on the target are met. In this paper, we explore the use of Costas arrays - permutation matrices with ideal auto-ambiguity properties - for the design of such targets.
Resumo:
Póster presentado en el VII European/ I World Meeting in Visual and Physiological Optics
Resumo:
Póster presentado en el VII European/ I World Meeting in Visual and Physiological Optics
Resumo:
Unlike fish and amphibians, mammals do not regenerate retinal neurons throughout life. However, neurogenic potential may be conserved in adult mammal retina and it is necessary to identify the factors that regulate retinal progenitor cells (RPC) proliferative capacity to scope their therapeutic potential. Müller cells can be progenitors for retinal neuronal cells and can play an essential role in the restoration of visual function after retinal injury. Some members of the Toll-like receptor (TLR) family, TLR2, TLR3 and TLR4, are related to progenitor cells proliferation. Müller cells are important in retinal regeneration and stable cell lines are useful for the study of retinal stem cell biology. Our purpose was to obtain a Müller-derived cell line with progenitor characteristics and potential interest in regeneration processes. We obtained and characterized a murine Müller-derived cell line (MU-PH1), which proliferates indefinitely in vitro. Our results show that (i) MU-PH1 cells expresses the Müller cell markers Vimentin, S-100, glutamine synthetase and the progenitor and stem cell markers Nestin, Abcg2, Ascl1, α-tubulin and β-III-tubulin, whereas lacks the expression of CRALBP, GFAP, Chx10, Pax6 and Notch1 markers; (ii) MU-PH1 cell line stably express the photoreceptor markers recoverin, transducin, rhodopsin, blue and red/green opsins and also melanopsin; (iii) the presence of opsins was confirmed by the recording of intracellular free calcium levels during light stimulation; (iv) MU-PH1 cell line also expresses the melatonin MT1 and MT2 receptors; (v) MU-PH1 cells express TLR1, 2, 4 and 6 mRNA; (vi) MU-PH1 express TLR2 at cell surface level; (vii) Candida albicans increases TLR2 and TLR6 mRNA expression; (viii) C. albicans or TLR selective agonists (Pam(3)CysSK(4), LPS) did not elicit morphological changes nor TNF-α secretion; (ix) C. albicans and Pam(3)CysSK(4) augmented MU-PH1 neurospheres formation in a statistically significant manner. Our results indicate that MU-PH1 cell line could be of great interest both as a photoreceptor model and in retinal regeneration approaches and that TLR2 may also play a role in retinal cell proliferation.
Resumo:
Toll-like receptors (TLRs) are expressed by haematopoietic stem and progenitor cells (HSPCs), and may play a role in haematopoiesis in response to pathogens during infection. We have previously demonstrated that (i) inactivated yeasts of Candida albicans induce in vitro differentiation of HSPCs towards the myeloid lineage, and (ii) soluble TLR agonists induce in vivo their differentiation towards macrophages. In this work, using an in vivo model of HSPCs transplantation, we report for the first time that HSPCs sense C. albicans in vivo and subsequently are directed to produce macrophages by a TLR2-dependent signalling. Purified lineage-negative cells (Lin−) from bone marrow of C57BL/6 mice (CD45.2 alloantigen) were transplanted into B6Ly5.1 mice (CD45.1 alloantigen), which were then injected with viable or inactivated C. albicans yeasts. Transplanted cells were detected in the spleen and in the bone marrow of recipient mice, and they differentiate preferentially to macrophages, both in response to infection or in response to inactivated yeasts. The generation of macrophages was dependent on TLR2 but independent of TLR4, as transplanted Lin− cells from TLR2−/− mice did not give rise to macrophages, whereas Lin− cells from TLR4−/− mice generated macrophages similarly to control cells. Interestingly, the absence of TLR2, or in a minor extent TLR4, gives Lin− cells an advantage in transplantation assays, as increases the percentage of transplanted recovered cells. Our results indicatethat TLR-mediated recognition of C. albicans by HSPCs may help replace and/or increase cells that constitute the first line of defence against the fungus, and suggest that TLR-mediated signalling may lead to reprogramming early progenitors to rapidly replenishing the innate immune system and generate the most necessary mature cells to deal with the pathogen.
Resumo:
In this study, a new type of nanopigment, obtained from a nanoclay (NC) and a dye, was synthesized in the laboratory, and these nanopigments were used to color an ethylene vinyl acetate (EVA) copolymer. Several of these nanoclay-based pigments (NCPs) were obtained through variations in the cation exchange capacity (CEC) percentage of the NC exchanged with the dye and also including an ammonium salt. Composites of EVA and different amounts of the as-synthesized nanopigments were prepared in a melt-intercalation process. Then, the morphological, mechanical, thermal, rheological, and colorimetric properties of the samples were assessed. The EVA/NCP composites developed much better color properties than the samples containing only the dye, especially when both the dye and the ammonium salt were exchanged with NC. Their other properties were similar to those of more conventional EVA/NC composites.
Resumo:
In this study, a novel kind of hybrid pigment based on nanoclays and dyes was synthesized and characterized. These nanoclay-based pigments (NCPs) were prepared at the laboratory with sodium montmorillonite nanoclay (NC) and methylene blue (MB). The cation-exchange capacity of NC exchanged with MB was varied to obtain a wide color gamut. The synthesized nanopigments were thoroughly characterized. The NCPs were melt-mixed with linear low-density polyethylene (PE) with an internal mixer. Furthermore, samples with conventional colorants were prepared in the same way. Then, the properties (mechanical, thermal, and colorimetric) of the mixtures were assessed. The PE–NCP samples developed better color properties than those containing conventional colorants and used as references, and their other properties were maintained or improved, even at lower contents of dye compared to that with the conventional colorants.
Resumo:
New color-measuring instruments known as multiangle spectrophotometers have been recently created to measure and characterize the goniochromism of special-effect pigments in many materials with a particular visual appearance (metallic, interference, pearlescent, sparkle, or glitter). These devices measure the gonioapparent color from the spectral relative reflectance factor and the L*a*b* values of the sample with different illumination and observation angles. These angles usually coincide with requirements marked in American Society for Testing and Materials (ASTM) and Deutsches Institut Für Normung standards relating to the gonioapparent color, but the results of comparisons between these instruments are still inconclusive. Therefore, the main purpose of this study is to compare several multiangle spectrophotometers at a reproducibility level according to ASTM E2214-08 guidelines. In particular, we compared two X-Rite multi-gonio spectrophotometers (MA98 and MA68II), a Datacolor multi-gonio spectrophotometer (FX10), and a BYK multi-gonio spectrophotometer (BYK-mac). These instruments share only five common measurement geometries: 45° × −30° (as 15°), 45° × −20° (as 25°), 45° × 0° (as 45°), 45° × 30° (as 75°), 45° × 65° (as 110°). Specific statistical studies were used for the reproducibility comparison, including a Hotelling test and a statistical intercomparison test to determine the confidence interval of the partial color differences ΔL*, Δa*, Δb*, and the total color difference ΔE*ab. This was conducted using a database collection of 88 metallic and pearlescent samples that were measured 20 times without the replacement of all the instruments. The final findings show that in most measurement geometries, the reproducibility differences between pairs of instruments are statistically significant, although in general, there is a better reproducibility level at certain common geometries for newer instruments (MA98 and BYK-mac). This means that these differences are due to systematic or bias errors (angle tolerances for each geometry, photometric scales, white standards, etc.), but not exclusively to random errors. However, neither of the statistical tests used is valid to discriminate and quantify the detected bias errors in this comparison between instruments.
Resumo:
We rigorously analyze the propagation of localized surface waves that takes place at the boundary between a semi-infinite layered metal-dielectric (MD) nanostructure cut normally to the layers and a isotropic medium. It is demonstrated that Dyakonov-like surface waves (also coined dyakonons) with hybrid polarization may propagate in a wide angular range. As a consequence, dyakonon-based wave-packets (DWPs) may feature sub-wavelength beamwidths. Due to the hyperbolic-dispersion regime in plasmonic crystals, supported DWPs are still in the canalization regime. The apparent quadratic beam spreading, however, is driven by dissipation effects in metal.
Resumo:
Purpose: The aim of this study is to determine the reliability of corneal thickness measurements derived from SOCT Copernicus HR (Fourier domain OCT). Methods: Thirty healthy eyes of 30 subjects were evaluated. One eye of each patient was chosen randomly. Images were obtained of the central (up to 2.0 mm from the corneal apex) and paracentral (2.0 to 4.0 mm) cornea. We assessed corneal thickness (central and paracentral) and epithelium thickness. The intra-observer repeatability data were analysed using the intra-class correlation coefficient (ICC) for a range of 95 per cent within-subject standard deviation (SW) and the within-subject coefficient of variation (CW). The level of agreement by Bland–Altman analysis was also represented for the study of the reproducibility between observers and agreement between methods of measurement (automatic versus manual). Results: The mean value of the central corneal thickness (CCT) was 542.4 ± 30.1 μm (SD). There was a high intra-observer agreement, finding the best result in the central sector with an intra-class correlation coefficient of 0.99, 95 per cent CI (0.989 to 0.997) and the worst, in the minimum corneal thickness, with an intra-class correlation coefficient of 0.672, 95 per cent CI (0.417 to 0.829). Reproducibility between observers was very high. The best result was found in the central sector thickness obtained both manually and automatically with an intra-class correlation coefficient of 0.990 in both cases and the worst result in the maximum corneal thickness with an intra-class correlation coefficient of 0.827. The agreement between measurement methods was also very high with intra-class correlation coefficient greater than 0.91. On the other hand the repeatability and reproducibility for epithelial measurements was poor. Conclusion: Pachymetric mapping with SOCT Copernicus HR was found to be highly repeatable and reproducible. We found that the device lacks an appropriate ergonomic design as proper focusing of the laser beam onto the cornea for anterior segment scanning required that patients were positioned slightly farther away from the machine head-rest than in the setup for retinal imaging.
Resumo:
In this study, a digital CMOS camera was calibrated for use as a non-contact colorimeter for measuring the color of granite artworks. The low chroma values of the granite, which yield similar stimulation of the three color channels of the camera, proved to be the most challenging aspect of the task. The appropriate parameters for converting the device-dependent RGB color space into a device-independent color space were established. For this purpose, the color of a large number of Munsell samples (corresponding to the previously defined color gamut of granite) was measured with a digital camera and with a spectrophotometer (reference instrument). The color data were then compared using the CIELAB color formulae. The best correlations between measurements were obtained when the camera works to 10-bits and the spectrophotometric measures in SCI mode. Finally, the calibrated instrument was used successfully to measure the color of six commercial varieties of Spanish granite.
Resumo:
Objetivo: Evaluar los resultados obtenidos mediante el empleo de los filtros de Bangerter en casos de ambliopía media o moderada asociada a estrabismo. Material y métodos: Se realizó un estudio prospectivo con 30 pacientes de edades comprendidas entre 2 y 9 años con ambliopía media o moderada unilateral asociada a estrabismo. Todos los pacientes fueron tratados mediante la prescripción del empleo de filtros de Bangerter en el ojo no ambliope junto a su corrección refractiva. En todos los casos el filtro seleccionado indujo una reducción de la agudeza visual de 2 líneas por debajo de la agudeza visual corregida (AVCC) del ojo ambliope. Se realizó un seguimiento durante un periodo de 12 meses. Resultados: Se observó una mejoría estadísticamente significativa en la AVCC del ojo ambliope a los 3 meses (p<0.01), con mejorías adicionales a los 6, 9 y 12 meses (p≤0,02).La AVCC en los ojos no ambliopes permaneció sin cambios durante los primeros 6 meses de tratamiento (p≥0,52), con una mejoría significativa a los 9 meses (p=0,03). Sólo se evidenciaron diferencias significativas en la AVCC entre los ojos ambliopes y los ojos sanos a los 3 meses tras el uso de los filtros (p<0,01). La densidad del filtro tuvo que ser cambiada durante el seguimiento en 12 ojos (40%). Se encontró correlación inversa significativa entre la densidad del filtro y la AVCC al final del seguimiento (r≤-0,35, p≤0,01).Conclusiones: Los filtros de Bangerter son útiles para el tratamiento de la ambliopía media o moderada asociada a estrabismo, si bien la inversión de la dominancia ocular debe ser mantenida a lo largo del tratamiento para optimizar los resultados.
Resumo:
Presentamos un caso de ambliopía unilateral en una paciente de 7 años, no existiendo alteraciones refractivas, corneales o retinianas que lo justifiquen. La exploración mediante tecnología de cámara Scheimpflug permitió el diagnóstico de un Ienticono posterior asociado a una pequeña catarata congénita polar posterior. El estudio aberrométrico reveló la importancia óptica de dicha condición como causante de la ambliopía en este caso.
Resumo:
Purpose: To calculate theoretically the errors in the estimation of corneal power when using the keratometric index (nk) in eyes that underwent laser refractive surgery for the correction of myopia and to define and validate clinically an algorithm for minimizing such errors. Methods: Differences between corneal power estimation by using the classical nk and by using the Gaussian equation in eyes that underwent laser myopic refractive surgery were simulated and evaluated theoretically. Additionally, an adjusted keratometric index (nkadj) model dependent on r1c was developed for minimizing these differences. The model was validated clinically by retrospectively using the data from 32 myopic eyes [range, −1.00 to −6.00 diopters (D)] that had undergone laser in situ keratomileusis using a solid-state laser platform. The agreement between Gaussian (PGaussc) and adjusted keratometric (Pkadj) corneal powers in such eyes was evaluated. Results: It was found that overestimations of corneal power up to 3.5 D were possible for nk = 1.3375 according to our simulations. The nk value to avoid the keratometric error ranged between 1.2984 and 1.3297. The following nkadj models were obtained: nkadj= −0.0064286r1c + 1.37688 (Gullstrand eye model) and nkadj = −0.0063804r1c + 1.37806 (Le Grand). The mean difference between Pkadj and PGaussc was 0.00 D, with limits of agreement of −0.45 and +0.46 D. This difference correlated significantly with the posterior corneal radius (r = −0.94, P < 0.01). Conclusions: The use of a single nk for estimating the corneal power in eyes that underwent a laser myopic refractive surgery can lead to significant errors. These errors can be minimized by using a variable nk dependent on r1c.