951 resultados para cylindrical grinding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na fabricação de componentes mecânicos precisos, que necessitam de alta resistência mecânica e ao desgaste, utiliza-se o processo de retificação, para conferir o acabamento final desejado e, também, para eliminar as deformações ocorridas durante a têmpera do aço. No entanto, as condições de retificação devem ser adequadas, para que não sejam introduzidas falhas na peça. Novos conceitos de lubrificação e refrigeração, para o processo de retificação, estão sendo pesquisados, de forma a diminuir os custos e os danos ambientais causados pelos fluidos de corte. Nesse trabalho, é analisada a influência das técnicas de mínima quantidade de lubrificante (MQL), refrigeração otimizada e refrigeração convencional, com diferentes vazões e velocidade de aplicação do fluido de corte, na qualidade das peças produzidas com aço ABNT 4340 endurecido, no processo de retificação cilíndrica externa de mergulho com a utilização de rebolos de CBN. O Aço ABNT 4340 apresenta várias aplicações industriais, sendo considerado de uso aeronáutico devido, sua alta resistência mecânica sem aumentar o peso dos componentes que o utilizam. A análise da qualidade das peças foi realizada com a verficação das rugosidades e com a análise de microscopias eletrônicas de varredura. Verificou-se, ainda, a força tangencial de corte. em relação às diferentes formas de aplicação do fluido de corte, notou-se o melhor desempenho da aplicação otimizada, para maiores velocidades, mostrando a eficiência do bocal utilizado. O processo otimizado e o processo MQL foram capazes de manter a integridade superficial das peças produzidas. Exceção somente para a condição MQL com vazão de fluido de corte de 40ml/h, que produziu trincas e queima superficial. Rebolos com baixa concentração de CBN, conseqüentemente mais baratos, proporcionaram bons resultados, quando associados com técnicas mais eficientes de aplicação de fluido de corte apresentando desgaste reduzido.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biofilms are multicellular bacterial structures that adhere to surfaces and often endow the bacterial population with tolerance to antibiotics and other environmental insults. Biofilms frequently colonize the tubing of medical devices through mechanisms that are poorly understood. Here we studied the helicoidal spread of Pseudomonas putida biofilms through cylindrical conduits of varied diameters in slow laminar flow regimes. Numerical simulations of such flows reveal vortical motion at stenoses and junctions, which enhances bacterial adhesion and fosters formation of filamentous structures. Formation of long, downstream-flowing bacterial threads that stem from narrowings and connections was detected experimentally, as predicted by our model. Accumulation of bacterial biomass makes the resulting filaments undergo a helical instability. These incipient helices then coarsened until constrained by the tubing walls, and spread along the whole tube length without obstructing the flow. A three-dimensional discrete filament model supports this coarsening mechanism and yields simulations of helix dynamics in accordance with our experimental observations. These findings describe an unanticipated mechanism for bacterial spreading in tubing networks which might be involved in some hospital-acquired infections and bacterial contamination of catheters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This masther dissertation presents a contribution to the study of 316L stainless steel sintering aiming to study their behavior in the milling process and the effect of isotherm temperature on the microstructure and mechanical properties. The 316L stainless steel is a widely used alloy for their high corrosion resistance property. However its application is limited by the low wear resistance consequence of its low hardness. In previous work we analyzed the effect of sintering additives as NbC and TaC. This study aims at deepening the understanding of sintering, analyzing the effect of grinding on particle size and microstructure and the effect of heating rate and soaking time on the sintered microstructure and on their microhardness. Were milled 316L powders with NbC at 1, 5 and 24 hours respectively. Particulates were characterized by SEM and . Cylindrical samples height and diameter of 5.0 mm were compacted at 700 MPa. The sintering conditions were: heating rate 5, 10 and 15◦C/min, temperature 1000, 1100, 1200, 1290 and 1300◦C, and soaking times of 30 and 60min. The cooling rate was maintained at 25◦C/min. All samples were sintered in a vacuum furnace. The sintered microstructure were characterized by optical and electron microscopy as well as density and microhardness. It was observed that the milling process has an influence on sintering, as well as temperature. The major effect was caused by firing temperature, followed by the grinding and heating rate. In this case, the highest rates correspond to higher sintering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steel is an alloy EUROFER promising for use in nuclear reactors, or in applications where the material is subjected to temperatures up to 550 ° C due to their lower creep resistance under. One way to increase this property, so that the steel work at higher temperatures it is necessary to prevent sliding of its grain boundaries. Factors that influence this slip contours are the morphology of the grains, the angle and speed of the grain boundaries. This speed can be decreased in the presence of a dispersed phase in the material, provided it is fine and homogeneously distributed. In this context, this paper presents the development of a new material metal matrix composite (MMC) which has as starting materials as stainless steel EUROFER 97, and two different kinds of tantalum carbide - TaC, one with average crystallite sizes 13.78 nm synthesized in UFRN and another with 40.66 nm supplied by Aldrich. In order to improve the mechanical properties of metal matrix was added by powder metallurgy, nano-sized particles of the two types of TaC. This paper discusses the effect of dispersion of carbides in the microstructure of sintered parts. Pure steel powders with the addition of 3% TaC UFRN and 3% TaC commercial respectively, were ground in grinding times following: a) 5 hours in the planetary mill for all post b) 8 hours of grinding in the mill Planetary only for steel TaC powders of commercial and c) 24 hours in the conventional ball mill mixing the pure steel milled for 5 hours in the planetary mill with 3% TaC commercial. Each of the resulting particulate samples were cold compacted under a uniaxial pressure of 600MPa, on a cylindrical matrix of 5 mm diameter. Subsequently, the compressed were sintered in a vacuum furnace at temperatures of 1150 to 1250 ° C with an increment of 20 ° C and 10 ° C per minute and maintained at these isotherms for 30, 60 and 120 minutes and cooled to room temperature. The distribution, size and dispersion of steel and composite particles were determined by x-ray diffraction, scanning electron microscopy followed by chemical analysis (EDS). The structures of the sintered bodies were observed by optical microscopy and scanning electron accompanied by EDS beyond the x-ray diffraction. Initial studies sintering the obtained steel EUROFER 97 a positive reply in relation to improvement of the mechanical properties independent of the processing, because it is obtained with sintered microhardness values close to and even greater than 100% of the value obtained for the HV 333.2 pure steel as received in the form of a bar

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The following thesis focused on the dry grinding process modelling and optimization for automotive gears production. A FEM model was implemented with the aim at predicting process temperatures and preventing grinding thermal defects on the material surface. In particular, the model was conceived to facilitate the choice of the grinding parameters during the design and the execution of the dry-hard finishing process developed and patented by the company Samputensili Machine Tools (EMAG Group) on automotive gears. The proposed model allows to analyse the influence of the technological parameters, comprising the grinding wheel specifications. Automotive gears finished by dry-hard finishing process are supposed to reach the same quality target of the gears finished through the conventional wet grinding process with the advantage of reducing production costs and environmental pollution. But, the grinding process allows very high values of specific pressure and heat absorbed by the material, therefore, removing the lubricant increases the risk of thermal defects occurrence. An incorrect design of the process parameters set could cause grinding burns, which affect the mechanical performance of the ground component inevitably. Therefore, a modelling phase of the process could allow to enhance the mechanical characteristics of the components and avoid waste during production. A hierarchical FEM model was implemented to predict dry grinding temperatures and was represented by the interconnection of a microscopic and a macroscopic approach. A microscopic single grain grinding model was linked to a macroscopic thermal model to predict the dry grinding process temperatures and so to forecast the thermal cycle effect caused by the process parameters and the grinding wheel specification choice. Good agreement between the model and the experiments was achieved making the dry-hard finishing an efficient and reliable technology to implement in the gears automotive industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventional tilted implants are used in oral rehabilitation for heavily absorbed maxilla to avoid bone grafts; however, few research studies evaluate the biomechanical behavior when different angulations of the implants are used. The aim of this study was evaluate, trough photoelastic method, two different angulations and length of the cantilever in fixed implant-supported maxillary complete dentures. Two groups were evaluated: G15 (distal tilted implants 15°) and G35 (distal tilted implants 35°) n = 6. For each model, 2 distal tilted implants (3.5 x 15 mm long cylindrical cone) and 2 parallel tilted implants in the anterior region (3.5 x 10 mm) were installed. Photoelastic models were submitted to three vertical load tests: in the end of cantilever, in the last pillar and in the all pillars at the same time. We obtained the shear stress by Fringes software and found values for total, cervical and apical stress. The quantitative analysis was performed using the Student tests and Mann-Whitney test; p ≥ 0.05. There is no difference between G15 and G35 for total stress regardless of load type. Analyzing the apical region, G35 reduced strain values considering the distal loads (in the cantilever p = 0.03 and in the last pillar p = 0.02), without increasing the stress level in the cervical region. Considering the load in all pillars, G35 showed higher stress concentration in the cervical region (p = 0.04). For distal loads, G15 showed increase of tension in the apical region, while for load in all pillars, G35 inclination increases stress values in the cervical region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To evaluate the sleep bruxism, malocclusions, orofacial dysfunctions and salivary levels of cortisol and alpha-amylase in asthmatic children. 108 7-9-yr-old children were selected from Policlinic Santa Teresinha Doutor Antonio Haddad Dib (asthmatics, n=53) and from public schools (controls, n=55), Piracicaba, SP, Brazil. Sleep bruxism diagnosis was confirmed by parental report of grinding sounds and the presence of shiny and polish facets on incisors and/or first permanent molars. The index of orthodontic treatment need was used for occlusion evaluation. Orofacial dysfunctions were evaluated using the nordic orofacial test-screening (NOT-S). Salivary cortisol and alpha-amylase were expressed as awakening response (AR), calculated as the difference between levels immediately after awakening and 30min after waking, and diurnal decline (DD), calculated as the difference between levels at 30min after waking and at bedtime. Data were analyzed using Shapiro-Wilk/Kolmogorov-Smirnov, Chi-square, unpaired t test/Mann-Whitney and paired t/Wilcoxon tests. Sleep bruxism was more prevalent in children with asthma than controls (47.2% vs. 27.3%, p<0.05). Asthmatics had higher scores of NOT-S total and interview (p<0.05). Dysfunctions on sensory function and chewing and swallowing were more frequent in asthmatics (p<0.05). Salivary cortisol AR on weekend was significantly higher for asthmatics (p<0.05). Salivary cortisol DD was significantly higher on weekday than weekend for controls (p<0.05). There were no significant differences in alpha-amylase values in and between groups. The presence of asthma in children was associated with sleep bruxism, negative perception of sensory, chewing and swallowing functions, and higher concentrations of salivary cortisol on weekend.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work was done with the objective of studying some physical and mechanical characteristics of the sugarcane bagasse ash added to a soil-cement mixture, in order to obtain an alternative construction material. The sugarcane bagasse ash pre-treatment included both sieving and grinding, before mixing with soil and cement. Different proportions of cement-ash were tested by determining its standard consistence and its compressive resistance at 7 and 28 days age. The various treatments were subsequently applied to the specimens molded with different soil-cement-ash mixtures which in turns were submitted to compaction, unconfined compression and water absorption laboratory tests. The results showed that it is possible to replace up to 20% of Portland cement by sugarcane bagasse ash without any damage to the mixture's compressive strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this work is the study of the effect of rice husk addition on the physical and mechanical properties of soil-cement, in order to obtain an alternative construction material. The rice husk preparation consisted of grinding, sieving, and the pre-treatment with lime solution. The physical characteristics of the soil and of the rice husk were determined. Different amounts of soil, cement and rice husk were tested by compaction and unconfined compression. The specimens molded according to the treatments applied to the mixtures were subsequently submitted to compression testing and to tensile splitting cylinder testing at 7 and 28 days of age and to water absorption testing. After determining its physical and mechanical characteristics, the best results were obtained for the soil + 12% (cement + rice husk) mixture. The results showed a promising use as an alternative construction material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fresh-cut sliced fruits and vegetables are ready to eat immediately and their sensorial characteristics should be similar to fresh product. Although most of the studies in this area are focused on vegetables, there is a great market potential for fresh-cut sliced fruits, mainly for those which exhibit some commercialization or preparation difficulties such as pineapple. The objective of this work was to evaluate the effect of 1% and 3% concentrations of calcium salts (chloride, sulphate and lactate) on pH, total soluble solids and firmness values of minimally processed pineapple slices. Two types of indenters and three firmness indexes were investigated aiming to identify the best index. Results showed that calcium sulphate 3% kept average firmness index up to 44.45% higher than the index value of the control. Even though both indenters exhibited similar variability the cylindrical one was able to point out more differences between control and treatments than the cylindrical borer indenter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rice husk and its ash are abundant and renewable and can be used to obtain alternative building materials. An increase in the consumption of such waste could help minimize the environmental problems from their improper disposal. This study aimed to evaluate the use of ashes as a cargo mineral (filler). However, the rice husk chemically interferes in the conduct of the based cement mixtures. Thus, different mixes cement-rice husk with and without the addition of ash were evaluated in order to highlight the influence of its components (husk; ash), which could otherwise be excluded or be underestimated. Cylindrical samples (test of simple compression and traction by diametrical compression) and samples extracted from manufactured pressed board (test of bending and parallel compression to the surface), were used to evaluate the behavior of different mixtures of components (rice hush; RHA - rice husk ahs). The results of the mechanical tests showed, in general, there is not a statistical difference between the mixtures, which are associated with the chemical suppressive effect of the rice husk ash. The mixture of rice husk of 10 mm, with an addition of 35% of the rice husk ash, is notable for allowing the highest consumption of rice husk and rice husk ash, to reduce 25% the consumption of cement and to allow the storage (without emissions to the atmosphere), around 1.9 ton of CO2 per ton of cement consumed, thus contributing to the reduction of CO2 emissions, which can stimulate rural constructions under an ecological point of view.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Broccoli seeds were coated in a conical-cylindrical spouted bed with an aqueous suspension of hydroxy ethyl cellulose aiming to improve the seeds coating technique using a fluid-dynamic process. An experimental design was applied to investigate the effects of the operating variables: gas temperature, atomizing air pressure and suspension flow rate on the germination of the seeds and on the process efficiency. Results indicated that the operating variables affect both the coating process efficiency and the germination ability. However, the analysis didn t identify differences between the germination potential of coated and uncoated seeds. Coated seeds absorbed up to 10 percent less moisture than the uncoated ones, when the environment temperature and humidity were controlled over a period of time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spouted and fluidized bed technologies are usually employed in operations of drying, coating and granulation of particles by the chemical and pharmaceutical industries. The use of these techniques in agronomy is limited to the treatment of some species of seeds. In this work, the objective was to analyse the fluid-dynamics of fluidized and spouted beds when broccoli (Brassica oleracea L. var. Italica) seeds are used and also to verify the influence on seed germination after 60 min of seed exposition to spouting or fluidization, at room temperature. The fluid-dynamics was defined by the measurements of the bed pressure drop as a function of the air flow rate for different seeds loads. The experimental conditions were based on the physical properties of the seeds and were limited by the apparatus dimensions. The cone-cylindrical bed was constructed in plexyglass to permit flow visualization. The values of the parameters: maximum pressure drop, minimum spouting flow rate and pressure drop, and stable spout pressure drop were experimentally obtained from the fluid-dynamic analysis and were compared with the values calculated by empirical equations found in the literature. The same procedure was carried out with the fluidized bed and the important parameters for this regime were the air velocity and the bed pressure drop at minimum fluidization. The analysis of seed germination indicated that no damage was caused to the seeds by the spout or fluidization processes.