879 resultados para Zebrafish Proteins
Resumo:
A detailed analysis of structural and position dependent characteristic features of helices will give a better understanding of the secondary structure formation in globular proteins. Here we describe an algorithm that quantifies the geometry of helices in proteins on the basis of their C-alpha atoms alone. The Fortran program HELANAL can extract the helices from the PDB files and then characterises the overall geometry of each helix as being linear, curved or kinked, in terms of its local structural features, viz. local helical twist and rise, virtual torsion angle, local helix origins and bending angles between successive local helix axes. Even helices with large radius of curvature are unambiguously identified as being linear or curved. The program can also be used to differentiate a kinked helix and other motifs, such as helix-loop-helix or a helix-turn-helix (with a single residue linker) with the help of local bending angles. In addition to these, the program can also be used to characterise the helix start and end as well as other types of secondary structures.
Resumo:
Monoclonal antibodies were raised against purified chicken retinol-binding protein. These were characterised extensively with respect to their ability to recognize retinol-binding proteins from different species. The monoclonal antibodies exhibited differential recognition characteristics. Though the majority presented restricted reactivities, one out of the four monoclonal antibodies studied cross-reacted with retinol-binding proteins from all species tested so far.
Resumo:
The nucleotide sequence of genes 4 and 9, encoding the outer capsid proteins VP4 and VP7 of a serotype 10 tissue culture-adapted strain, 1321, representative of asymptomatic neonatal rotaviruses isolated from neonates in Bangalore, India, were determined. Comparison of nucleotide and deduced amino acid sequences of 1321 VP4 and VP7 with previously published sequences of various serotypes revealed that both genes were highly homologous to the respective genes of serotype 10 bovine rotavirus, B223. The VP4 of 1321 represents a new human P serotype and the 1321 and related strains represent the first description of neonatal rotaviruses that appear to derive both surface proteins from an animal rotavirus.
Resumo:
Moonlighting functions have been described for several proteins previously thought to localize exclusively in the cytoplasm of bacterial or eukaryotic cells. Moonlighting proteins usually perform conserved functions, e. g. in glycolysis or as chaperonins, and their traditional and moonlighting function(s) usually localize to different cell compartments. The most characterized moonlighting proteins in Grampositive bacteria are the glycolytic enzymes enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which function in bacteria-host interactions, e. g. as adhesins or plasminogen receptors. Research on bacterial moonlighting proteins has focused on Gram-positive bacterial pathogens, where many of their functions have been associated with bacterial virulence. In this thesis work I show that also species of the genus Lactobacillus have moonlighting proteins that carry out functions earlier associated with bacterial virulence only. I identified enolase, GAPDH, glutamine synthetase (GS), and glucose-6-phosphate isomerase (GPI) as moonlighting proteins of Lactobacillus crispatus strain ST1 and demonstrated that they are associated with cell surface and easily released from the cell surface into incubation buffer. I also showed that these lactobacillar proteins moonlight either as adhesins with affinity for basement membrane and extracellular matrix proteins or as plasminogen receptors. The mechanisms of surface translocation and anchoring of bacterial moonlighting proteins have remained enigmatic. In this work, the surface localization of enolase, GAPDH, GS and GPI was shown to depend on environmental factors. The members of the genus Lactobacillus are fermentative organisms that lower the ambient pH by producing lactic acid. At acidic pH enolase, GAPDH, GS and GPI were associated with the cell surface, whereas at neutral pH they were released into the buffer. The release did not involve de novo protein synthesis. I showed that purified recombinant His6-enolase, His6-GAPDH, His6-GS and His6-GPI reassociate with cell wall and bind in vitro to lipoteichoic acids at acidic pH. The in-vitro binding of these proteins localizes to cell division septa and cell poles. I also show that the release of moonlighting proteins is enhanced in the presence of cathelicidin LL- 37, which is an antimicrobial peptide and a central part of the innate immunity defence. I found that the LL-37-induced detachment of moonlighting proteins from cell surface is associated with cell wall permeabilization by LL-37. The results in this thesis work are compatible with the hypothesis that the moonlighting proteins of L. crispatus associate to the cell wall via electrostatic or ionic interactions and that they are released into surroundings in stress conditions. Their surface translocation is, at least in part, a result from their release from dead or permeabilized cells and subsequent reassociation onto the cell wall. The results of this thesis show that lactobacillar cells rapidly change their surface architecture in response to environmental factors and that these changes influence bacterial interactions with the host.
Resumo:
Sequence specific resonance assignment constitutes an important step towards high-resolution structure determination of proteins by NMR and is aided by selective identification and assignment of amino acid types. The traditional approach to selective labeling yields only the chemical shifts of the particular amino acid being selected and does not help in establishing a link between adjacent residues along the polypeptide chain, which is important for sequential assignments. An alternative approach is the method of amino acid selective `unlabeling' or reverse labeling, which involves selective unlabeling of specific amino acid types against a uniformly C-13/N-15 labeled background. Based on this method, we present a novel approach for sequential assignments in proteins. The method involves a new NMR experiment named, {(CO)-C-12 (i) -N-15 (i+1)}-filtered HSQC, which aids in linking the H-1(N)/N-15 resonances of the selectively unlabeled residue, i, and its C-terminal neighbor, i + 1, in HN-detected double and triple resonance spectra. This leads to the assignment of a tri-peptide segment from the knowledge of the amino acid types of residues: i - 1, i and i + 1, thereby speeding up the sequential assignment process. The method has the advantage of being relatively inexpensive, applicable to H-2 labeled protein and can be coupled with cell-free synthesis and/or automated assignment approaches. A detailed survey involving unlabeling of different amino acid types individually or in pairs reveals that the proposed approach is also robust to misincorporation of N-14 at undesired sites. Taken together, this study represents the first application of selective unlabeling for sequence specific resonance assignments and opens up new avenues to using this methodology in protein structural studies.
Resumo:
One of the fundamental questions concerning homologous recombination is how RecA or its homologues recognize several DNA sequences with high affinity and catalyze all the diverse biological activities. In this study, we show that the extent of single-stranded DNA binding and strand exchange (SE) promoted by mycobacterial RecA proteins with DNA substrates having various degrees of GC content was comparable with that observed for Escherichia coli RecA. However, the rate and extent of SE promoted by these recombinases showed a strong negative correlation with increasing amounts of sequence divergence embedded at random across the length of the donor strand. Conversely, a positive correlation was seen between SE efficiency and the degree of sequence divergence in the recipient duplex DNA. The extent of heteroduplex formation was not significantly affected when both the pairing partners contained various degrees of sequence divergence, although there was a moderate decrease in the case of mycobacterial RecA proteins with substrates containing larger amounts of sequence divergence. Whereas a high GC content had no discernible effect on E. coli RecA coprotease activity, a negative correlation was apparent between mycobacterial RecA proteins and GC content. We further show clear differences in the extent of SE promoted by E. coli and mycobacterial RecA proteins in the presence of a wide range of ATP:ADP ratios. Taken together, our findings disclose the existence of functional diversity among E. coli and mycobacterial RecA nucleoprotein filaments, and the milieu of sequence divergence (i.e., in the donor or recipient) exerts differential effects on heteroduplex formation, which has implications for the emergence of new genetic variants.
Resumo:
The conformation of amino acid side chains as observed in well-determined structures of globular proteins has earlier been extensively investigated. In contrast, the structural features of the polypeptide backbone that result from the occurrence of specific amino acids along the polypeptide have not been analysed. In this article, we present the statistically significant features in the backbone geometry that appear to be a consequence of the occurrence of rotamers of different amino acid side chains by analysing 102 well-refined structures that form a random collection of proteins. It is found that the persistence of helical segments around each residue is influenced by the residue type. Several residues exert asymmetrical influence between the carboxyl and amino terminal polypeptide segments. The degree to which secondary structures depart from an average geometry also appears to depend on residue type. These departures are correlated to the corresponding Chou and Fasman parameters of amino acid residues. The frequency distribution of the side chain rotamers is influenced by polypeptide secondary structure. In turn, the rotamer conformation of side chain affects the extension of the secondary structure of the backbone. The strongest correlation is found between the occurrence of g+ conformation and helix propagation on the carboxyl side of many residues.
Resumo:
Crystal structure analysis of proline-containing alpha-helices in proteins has been carried out. High resolution crystal structures were selected from the Protein Data Bank. Apart from the standard internal parameters, some parameters which are specifically related to the bend in the helix due to proline have been developed and analyzed. Finally the position and nature of these helices and their interactions with the rest of the protein have been analyzed.
Resumo:
Nuclear import of proteins is mediated by the nuclear pore complexes in the nuclear envelope and requires the presence of a nuclear localization signal (NLS) on the karyophilic protein. In this paper, we describe studies with a monoclonal antibody, Mab E2, which recognizes a class of nuclear pore proteins of 60-76 kDa with a common phosphorylated epitope on rat nuclear envelopes. The Mab Ea-reactive proteins fractionated with the relatively insoluble pore complex-containing component of the envelope and gave a finely punctate pattern of nuclear staining in immunofluorescence assays. The antibody did not bind to any cytosolic proteins. Mab E2 inhibited the interaction of a simian virus 40 large T antigen NLS peptide with a specific 60-kDa NLS-binding protein from rat nuclear envelopes in photoaffinity labeling experiments. The antibody blocked the nuclear import of NLS-albumin conjugates in an in vitro nuclear transport assay with digitonin-permeabilized cells, but did not affect passive diffusion of a small nonnuclear protein, lysozyme, across the pore. Mab E2 may inhibit protein transport by directly interacting with the 60-kDa NLS-binding protein, thereby blocking signal-mediated nuclear import across the nuclear pore complex. (C) 1994 Academic Press, Inc.
Resumo:
Structure comparison tools can be used to align related protein structures to identify structurally conserved and variable regions and to infer functional and evolutionary relationships. While the conserved regions often superimpose well, the variable regions appear non superimposable. Differences in homologous protein structures are thought to be due to evolutionary plasticity to accommodate diverged sequences during evolution. One of the kinds of differences between 3-D structures of homologous proteins is rigid body displacement. A glaring example is not well superimposed equivalent regions of homologous proteins corresponding to a-helical conformation with different spatial orientations. In a rigid body superimposition, these regions would appear variable although they may contain local similarity. Also, due to high spatial deviation in the variable region, one-to-one correspondence at the residue level cannot be determined accurately. Another kind of difference is conformational variability and the most common example is topologically equivalent loops of two homologues but with different conformations. In the current study, we present a refined view of the ``structurally variable'' regions which may contain local similarity obscured in global alignment of homologous protein structures. As structural alphabet is able to describe local structures of proteins precisely through Protein Blocks approach, conformational similarity has been identified in a substantial number of `variable' regions in a large data set of protein structural alignments; optimal residue-residue equivalences could be achieved on the basis of Protein Blocks which led to improved local alignments. Also, through an example, we have demonstrated how the additional information on local backbone structures through protein blocks can aid in comparative modeling of a loop region. In addition, understanding on sequence-structure relationships can be enhanced through our approach. This has been illustrated through examples where the equivalent regions in homologous protein structures share sequence similarity to varied extent but do not preserve local structure.
Resumo:
The structural proteins of mycobacteriophage I3 have been analysed by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis (SDS-PAGE), radioiodination and immunoblotting. Based on their abundance the 34- and 70-kDa bands appeared to represent the major structural proteins. Successful cloning and expression of the 70-kDa protein-encoding gene of phage I3 in Escherichia coli and its complete nucleotide sequence determination have been accomplished, A second (partial) open reading frame following the stop codon for the 70-kDa protein was also identified within the cloned fragment. The deduced amino-acid sequence of the 70-kDa protein and the codon usage patterns indicated the preponderance of codons, as predicted from the high G+C content of the genomic DNA of phage I3.