878 resultados para Support vector regression


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a novel image classification scheme for benthic coral reef images that can be applied to both single image and composite mosaic datasets. The proposed method can be configured to the characteristics (e.g., the size of the dataset, number of classes, resolution of the samples, color information availability, class types, etc.) of individual datasets. The proposed method uses completed local binary pattern (CLBP), grey level co-occurrence matrix (GLCM), Gabor filter response, and opponent angle and hue channel color histograms as feature descriptors. For classification, either k-nearest neighbor (KNN), neural network (NN), support vector machine (SVM) or probability density weighted mean distance (PDWMD) is used. The combination of features and classifiers that attains the best results is presented together with the guidelines for selection. The accuracy and efficiency of our proposed method are compared with other state-of-the-art techniques using three benthic and three texture datasets. The proposed method achieves the highest overall classification accuracy of any of the tested methods and has moderate execution time. Finally, the proposed classification scheme is applied to a large-scale image mosaic of the Red Sea to create a completely classified thematic map of the reef benthos

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this study was to investigate pathological mechanisms underlying brain tissue alterations in mild cognitive impairment (MCI) using multi-contrast 3 T magnetic resonance imaging (MRI). METHODS: Forty-two MCI patients and 77 healthy controls (HC) underwent T1/T2* relaxometry as well as Magnetization Transfer (MT) MRI. Between-groups comparisons in MRI metrics were performed using permutation-based tests. Using MRI data, a generalized linear model (GLM) was computed to predict clinical performance and a support-vector machine (SVM) classification was used to classify MCI and HC subjects. RESULTS: Multi-parametric MRI data showed microstructural brain alterations in MCI patients vs HC that might be interpreted as: (i) a broad loss of myelin/cellular proteins and tissue microstructure in the hippocampus (p ≤ 0.01) and global white matter (p < 0.05); and (ii) iron accumulation in the pallidus nucleus (p ≤ 0.05). MRI metrics accurately predicted memory and executive performances in patients (p ≤ 0.005). SVM classification reached an accuracy of 75% to separate MCI and HC, and performed best using both volumes and T1/T2*/MT metrics. CONCLUSION: Multi-contrast MRI appears to be a promising approach to infer pathophysiological mechanisms leading to brain tissue alterations in MCI. Likewise, parametric MRI data provide powerful correlates of cognitive deficits and improve automatic disease classification based on morphometric features.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract This work studies the multi-label classification of turns in simple English Wikipedia talk pages into dialog acts. The treated dataset was created and multi-labeled by (Ferschke et al., 2012). The first part analyses dependences between labels, in order to examine the annotation coherence and to determine a classification method. Then, a multi-label classification is computed, after transforming the problem into binary relevance. Regarding features, whereas (Ferschke et al., 2012) use features such as uni-, bi-, and trigrams, time distance between turns or the indentation level of the turn, other features are considered here: lemmas, part-of-speech tags and the meaning of verbs (according to WordNet). The dataset authors applied approaches such as Naive Bayes or Support Vector Machines. The present paper proposes, as an alternative, to use Schoenberg transformations which, following the example of kernel methods, transform original Euclidean distances into other Euclidean distances, in a space of high dimensionality. Résumé Ce travail étudie la classification supervisée multi-étiquette en actes de dialogue des tours de parole des contributeurs aux pages de discussion de Simple English Wikipedia (Wikipédia en anglais simple). Le jeu de données considéré a été créé et multi-étiqueté par (Ferschke et al., 2012). Une première partie analyse les relations entre les étiquettes pour examiner la cohérence des annotations et pour déterminer une méthode de classification. Ensuite, une classification supervisée multi-étiquette est effectuée, après recodage binaire des étiquettes. Concernant les variables, alors que (Ferschke et al., 2012) utilisent des caractéristiques telles que les uni-, bi- et trigrammes, le temps entre les tours de parole ou l'indentation d'un tour de parole, d'autres descripteurs sont considérés ici : les lemmes, les catégories morphosyntaxiques et le sens des verbes (selon WordNet). Les auteurs du jeu de données ont employé des approches telles que le Naive Bayes ou les Séparateurs à Vastes Marges (SVM) pour la classification. Cet article propose, de façon alternative, d'utiliser et d'étendre l'analyse discriminante linéaire aux transformations de Schoenberg qui, à l'instar des méthodes à noyau, transforment les distances euclidiennes originales en d'autres distances euclidiennes, dans un espace de haute dimensionnalité.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phase encoded nano structures such as Quick Response (QR) codes made of metallic nanoparticles are suggested to be used in security and authentication applications. We present a polarimetric optical method able to authenticate random phase encoded QR codes. The system is illuminated using polarized light and the QR code is encoded using a phase-only random mask. Using classification algorithms it is possible to validate the QR code from the examination of the polarimetric signature of the speckle pattern. We used Kolmogorov-Smirnov statistical test and Support Vector Machine algorithms to authenticate the phase encoded QR codes using polarimetric signatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multivariate models were developed using Artificial Neural Network (ANN) and Least Square - Support Vector Machines (LS-SVM) for estimating lignin siringyl/guaiacyl ratio and the contents of cellulose, hemicelluloses and lignin in eucalyptus wood by pyrolysis associated to gaseous chromatography and mass spectrometry (Py-GC/MS). The results obtained by two calibration methods were in agreement with those of reference methods. However a comparison indicated that the LS-SVM model presented better predictive capacity for the cellulose and lignin contents, while the ANN model presented was more adequate for estimating the hemicelluloses content and lignin siringyl/guaiacyl ratio.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper studies based on Multilayer Perception Artificial Neural Network and Least Square Support Vector Machine (LS-SVM) techniques are applied to determine of the concentration of Soil Organic Matter (SOM). Performances of the techniques are compared. SOM concentrations and spectral data from Mid-Infrared are used as input parameters for both techniques. Multivariate regressions were performed for a set of 1117 spectra of soil samples, with concentrations ranging from 2 to 400 g kg-1. The LS-SVM resulted in a Root Mean Square Error of Prediction of 3.26 g kg-1 that is comparable to the deviation of the Walkley-Black method (2.80 g kg-1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tutkielmassa käsitellään matemaattisia ennustamismenetelmiä, jotka soveltuvat tyypin 1 diabeteksen ennustamiseen. Aluksi esitellään menetelmiä, jotka soveltuvat puuttuvia havaintoja sisältävien aineistojen paikkaamiseen. Paikattua aineistoa on mahdollista analysoida useilla tavallisilla tilastollisilla menetelmillä, jotka sopivat täydellisiin aineistoihin. Seuraavaksi pyritään mallintamaan aineistoa semiparametrisilla komponenttimalleilla (eng. mixture model), jolloin mallin muotoa ei ole tiukasti etukäteen rajoitettu. Sen jälkeen sovelletaan kolmea luokittelevaa ennustajaa: logistista regressiomallia, eteenpäinsyöttävää yhden piilotason neuroverkkoa ja SVM-menetelmää (eng. support vector machine). Esiteltäviä menetelmiä on sovellettu todelliseen aineistoon, joka on kerätty Turun yliopistossa käynnissä olevassa tutkimusprojektissa. Projektin tavoitteena on oppia ennustamaan ja ehkäisemään tyypin 1 diabetesta (Type 1 diabetes prediction and prevention project, lyh. DIPP-projekti). Erityisesti projektissa on pyritty löytämään uusia tuntemattomia taudinaiheuttajia. Tässä tutkielmassa paneudutaan sen sijaan kerätyn havaintoaineiston matemaattisiin analysointimenetelmiin. Parhaat ennusteet saatiin perinteisellä logistisella regressiomallilla. Tutkielmassa kuitenkin todetaan, että tulevaisuudessa on mahdollista löytää parempia ennustajia parantamalla muita edellä mainittuja menetelmiä. Erityisesti SVM-menetelmä ansaitsisi lisähuomiota, sillä tässä tutkielmassa sitä sovellettiin vain kaikkein yksinkertaisimmassa muodossa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper aims to assess the effectiveness of ASTER imagery to support the mapping of Pittosporum undulatum, an invasive woody species, in Pico da Vara Natural Reserve (S. Miguel Island, Archipelago of the Azores, Portugal). This assessment was done by applying K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Maximum Likelihood (MLC) pixel-based supervised classifications to 4 different geographic and remote sensing datasets constituted by the Visible, Near-Infrared (VNIR) and Short Wave Infrared (SWIR) of the ASTER sensor and by digital cartography associated to orography (altitude and "distance to water streams") of which the spatial distribution of Pittosporum undulatum directly depends. Overall, most performed classifications showed a strong agreement and high accuracy. At targeted species level, the two higher classification accuracies were obtained when applying MLC and KNN to the VNIR bands coupled with auxiliary geographic information use. Results improved significantly by including ecology and occurrence information of species (altitude and distance to water streams) in the classification scheme. These results show that the use of ASTER sensor VNIR spectral bands, when coupled to relevant ancillary GIS data, can constitute an effective and low cost approach for the evaluation and continuous assessment of Pittosporum undulatum woodland propagation and distribution within Protected Areas of the Azores Islands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coffee production was closely linked to the economic development of Brazil and, even today, coffee is an important product of the national agriculture. The State of Minas Gerais currently accounts for 52% of the whole coffee area in Brazil. Remote sensing data can provide information for monitoring and mapping of coffee crops, faster and cheaper than conventional methods. In this context, the objective of this study was to assess the effectiveness of coffee crop mapping in Monte Santo de Minas municipality, Minas Gerais State, Brazil, from fraction images derived from MODIS data, in both dry and rainy seasons. The Spectral Linear Mixing Model was used to derive fraction images of soil, coffee, and water/shade. These fraction images served as input data for the supervised automatic classification using the SVM - Support Vector Machine approach. The best results concerning Overall Accuracy and Kappa Index were obtained in the classification of the dry season, with 67% and 0.41, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Steganografian tarkoituksena on salaisen viestin piilottaminen muun informaation sekaan. Tutkielmassa perehdytään kirjallisuuden pohjalta steganografiaan ja kuvien digitaaliseen vesileimaamiseen. Tutkielmaan kuuluu myös kokeellinen osuus. Siinä esitellään vesileimattujen kuvien tunnistamiseen kehitetty testausjärjestelmä ja testiajojen tulokset. Testiajoissa kuvasarjoja on vesileimattu valituilla vesileimausmenetelmillä parametreja vaihdellen. Tunnistettaville kuville tehdään piirreirrotus. Erotellut piirteet annetaan parametreina luokittimelle, joka tekee lopullisen tunnistamispäätöksen. Tutkimuksessa saatiin toteutettua toimiva ohjelmisto vesileiman lisäämiseen ja vesileimattujen kuvien tunnistamiseen kuvajoukosta. Tulosten perusteella, sopivalla piirreirrottimella ja tukivektorikoneluokittimella päästään yli 95 prosentin tunnistamistarkkuuteen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis studies the predictability of market switching and delisting events from OMX First North Nordic multilateral stock exchange by using financial statement information and market information from 2007 to 2012. This study was conducted by using a three stage process. In first stage relevant theoretical framework and initial variable pool were constructed. Then, explanatory analysis of the initial variable pool was done in order to further limit and identify relevant variables. The explanatory analysis was conducted by using self-organizing map methodology. In the third stage, the predictive modeling was carried out with random forests and support vector machine methodologies. It was found that the explanatory analysis was able to identify relevant variables. The results indicate that the market switching and delisting events can be predicted in some extent. The empirical results also support the usability of financial statement and market information in the prediction of market switching and delisting events.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The subject of the thesis is automatic sentence compression with machine learning, so that the compressed sentences remain both grammatical and retain their essential meaning. There are multiple possible uses for the compression of natural language sentences. In this thesis the focus is generation of television program subtitles, which often are compressed version of the original script of the program. The main part of the thesis consists of machine learning experiments for automatic sentence compression using different approaches to the problem. The machine learning methods used for this work are linear-chain conditional random fields and support vector machines. Also we take a look which automatic text analysis methods provide useful features for the task. The data used for machine learning is supplied by Lingsoft Inc. and consists of subtitles in both compressed an uncompressed form. The models are compared to a baseline system and comparisons are made both automatically and also using human evaluation, because of the potentially subjective nature of the output. The best result is achieved using a CRF - sequence classification using a rich feature set. All text analysis methods help classification and most useful method is morphological analysis. Tutkielman aihe on suomenkielisten lauseiden automaattinen tiivistäminen koneellisesti, niin että lyhennetyt lauseet säilyttävät olennaisen informaationsa ja pysyvät kieliopillisina. Luonnollisen kielen lauseiden tiivistämiselle on monta käyttötarkoitusta, mutta tässä tutkielmassa aihetta lähestytään television ohjelmien tekstittämisen kautta, johon käytännössä kuuluu alkuperäisen tekstin lyhentäminen televisioruudulle paremmin sopivaksi. Tutkielmassa kokeillaan erilaisia koneoppimismenetelmiä tekstin automaatiseen lyhentämiseen ja tarkastellaan miten hyvin erilaiset luonnollisen kielen analyysimenetelmät tuottavat informaatiota, joka auttaa näitä menetelmiä lyhentämään lauseita. Lisäksi tarkastellaan minkälainen lähestymistapa tuottaa parhaan lopputuloksen. Käytetyt koneoppimismenetelmät ovat tukivektorikone ja lineaarisen sekvenssin mallinen CRF. Koneoppimisen tukena käytetään tekstityksiä niiden eri käsittelyvaiheissa, jotka on saatu Lingsoft OY:ltä. Luotuja malleja vertaillaan Lopulta mallien lopputuloksia evaluoidaan automaattisesti ja koska teksti lopputuksena on jossain määrin subjektiivinen myös ihmisarviointiin perustuen. Vertailukohtana toimii kirjallisuudesta poimittu menetelmä. Tutkielman tuloksena paras lopputulos saadaan aikaan käyttäen CRF sekvenssi-luokittelijaa laajalla piirrejoukolla. Kaikki kokeillut teksin analyysimenetelmät auttavat luokittelussa, joista tärkeimmän panoksen antaa morfologinen analyysi.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Remote sensing techniques involving hyperspectral imagery have applications in a number of sciences that study some aspects of the surface of the planet. The analysis of hyperspectral images is complex because of the large amount of information involved and the noise within that data. Investigating images with regard to identify minerals, rocks, vegetation and other materials is an application of hyperspectral remote sensing in the earth sciences. This thesis evaluates the performance of two classification and clustering techniques on hyperspectral images for mineral identification. Support Vector Machines (SVM) and Self-Organizing Maps (SOM) are applied as classification and clustering techniques, respectively. Principal Component Analysis (PCA) is used to prepare the data to be analyzed. The purpose of using PCA is to reduce the amount of data that needs to be processed by identifying the most important components within the data. A well-studied dataset from Cuprite, Nevada and a dataset of more complex data from Baffin Island were used to assess the performance of these techniques. The main goal of this research study is to evaluate the advantage of training a classifier based on a small amount of data compared to an unsupervised method. Determining the effect of feature extraction on the accuracy of the clustering and classification method is another goal of this research. This thesis concludes that using PCA increases the learning accuracy, and especially so in classification. SVM classifies Cuprite data with a high precision and the SOM challenges SVM on datasets with high level of noise (like Baffin Island).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les avancés dans le domaine de l’intelligence artificielle, permettent à des systèmes informatiques de résoudre des tâches de plus en plus complexes liées par exemple à la vision, à la compréhension de signaux sonores ou au traitement de la langue. Parmi les modèles existants, on retrouve les Réseaux de Neurones Artificiels (RNA), dont la popularité a fait un grand bond en avant avec la découverte de Hinton et al. [22], soit l’utilisation de Machines de Boltzmann Restreintes (RBM) pour un pré-entraînement non-supervisé couche après couche, facilitant grandement l’entraînement supervisé du réseau à plusieurs couches cachées (DBN), entraînement qui s’avérait jusqu’alors très difficile à réussir. Depuis cette découverte, des chercheurs ont étudié l’efficacité de nouvelles stratégies de pré-entraînement, telles que l’empilement d’auto-encodeurs traditionnels(SAE) [5, 38], et l’empilement d’auto-encodeur débruiteur (SDAE) [44]. C’est dans ce contexte qu’a débuté la présente étude. Après un bref passage en revue des notions de base du domaine de l’apprentissage machine et des méthodes de pré-entraînement employées jusqu’à présent avec les modules RBM, AE et DAE, nous avons approfondi notre compréhension du pré-entraînement de type SDAE, exploré ses différentes propriétés et étudié des variantes de SDAE comme stratégie d’initialisation d’architecture profonde. Nous avons ainsi pu, entre autres choses, mettre en lumière l’influence du niveau de bruit, du nombre de couches et du nombre d’unités cachées sur l’erreur de généralisation du SDAE. Nous avons constaté une amélioration de la performance sur la tâche supervisée avec l’utilisation des bruits poivre et sel (PS) et gaussien (GS), bruits s’avérant mieux justifiés que celui utilisé jusqu’à présent, soit le masque à zéro (MN). De plus, nous avons démontré que la performance profitait d’une emphase imposée sur la reconstruction des données corrompues durant l’entraînement des différents DAE. Nos travaux ont aussi permis de révéler que le DAE était en mesure d’apprendre, sur des images naturelles, des filtres semblables à ceux retrouvés dans les cellules V1 du cortex visuel, soit des filtres détecteurs de bordures. Nous aurons par ailleurs pu montrer que les représentations apprises du SDAE, composées des caractéristiques ainsi extraites, s’avéraient fort utiles à l’apprentissage d’une machine à vecteurs de support (SVM) linéaire ou à noyau gaussien, améliorant grandement sa performance de généralisation. Aussi, nous aurons observé que similairement au DBN, et contrairement au SAE, le SDAE possédait une bonne capacité en tant que modèle générateur. Nous avons également ouvert la porte à de nouvelles stratégies de pré-entraînement et découvert le potentiel de l’une d’entre elles, soit l’empilement d’auto-encodeurs rebruiteurs (SRAE).