Tyypin 1 diabeteksen matemaattisista ennustamismenetelmistä
Data(s) |
05/08/2010
05/08/2010
05/08/2010
|
---|---|
Resumo |
Tutkielmassa käsitellään matemaattisia ennustamismenetelmiä, jotka soveltuvat tyypin 1 diabeteksen ennustamiseen. Aluksi esitellään menetelmiä, jotka soveltuvat puuttuvia havaintoja sisältävien aineistojen paikkaamiseen. Paikattua aineistoa on mahdollista analysoida useilla tavallisilla tilastollisilla menetelmillä, jotka sopivat täydellisiin aineistoihin. Seuraavaksi pyritään mallintamaan aineistoa semiparametrisilla komponenttimalleilla (eng. mixture model), jolloin mallin muotoa ei ole tiukasti etukäteen rajoitettu. Sen jälkeen sovelletaan kolmea luokittelevaa ennustajaa: logistista regressiomallia, eteenpäinsyöttävää yhden piilotason neuroverkkoa ja SVM-menetelmää (eng. support vector machine). Esiteltäviä menetelmiä on sovellettu todelliseen aineistoon, joka on kerätty Turun yliopistossa käynnissä olevassa tutkimusprojektissa. Projektin tavoitteena on oppia ennustamaan ja ehkäisemään tyypin 1 diabetesta (Type 1 diabetes prediction and prevention project, lyh. DIPP-projekti). Erityisesti projektissa on pyritty löytämään uusia tuntemattomia taudinaiheuttajia. Tässä tutkielmassa paneudutaan sen sijaan kerätyn havaintoaineiston matemaattisiin analysointimenetelmiin. Parhaat ennusteet saatiin perinteisellä logistisella regressiomallilla. Tutkielmassa kuitenkin todetaan, että tulevaisuudessa on mahdollista löytää parempia ennustajia parantamalla muita edellä mainittuja menetelmiä. Erityisesti SVM-menetelmä ansaitsisi lisähuomiota, sillä tässä tutkielmassa sitä sovellettiin vain kaikkein yksinkertaisimmassa muodossa. |
Identificador |
http://www.doria.fi/handle/10024/63272 URN:NBN:fi-fe201101181107 |
Idioma(s) |
fi |
Tipo |
Pro gradu | Master's thesis |