579 resultados para Steering.
Resumo:
This correspondence considers the problem of optimally controlling the thrust steering angle of an ion-propelled spaceship so as to effect a minimum time coplanar orbit transfer from the mean orbital distance of Earth to mean Martian and Venusian orbital distances. This problem has been modelled as a free terminal time-optimal control problem with unbounded control variable and with state variable equality constraints at the final time. The problem has been solved by the penalty function approach, using the conjugate gradient algorithm. In general, the optimal solution shows a significant departure from earlier work. In particular, the optimal control in the case of Earth-Mars orbit transfer, during the initial phase of the spaceship's flight, is found to be negative, resulting in the motion of the spaceship within the Earth's orbit for a significant fraction of the total optimized orbit transfer time. Such a feature exhibited by the optimal solution has not been reported at all by earlier investigators of this problem.
Resumo:
The study explores new ideational changes in the information strategy of the Finnish state between 1998 and 2007, after a juncture in Finnish governing in the early 1990s. The study scrutinizes the economic reframing of institutional openness in Finland that comes with significant and often unintended institutional consequences of transparency. Most notably, the constitutional principle of publicity (julkisuusperiaate), a Nordic institutional peculiarity allowing public access to state information, is now becoming an instrument of economic performance and accountability through results. Finland has a long institutional history in the publicity of government information, acknowledged by law since 1951. Nevertheless, access to government information became a policy concern in the mid-1990s, involving a historical narrative of openness as a Nordic tradition of Finnish governing Nordic openness (pohjoismainen avoimuus). International interest in transparency of governance has also marked an opening for institutional re-descriptions in Nordic context. The essential added value, or contradictory term, that transparency has on the Finnish conceptualisation of governing is the innovation that public acts of governing can be economically efficient. This is most apparent in the new attempts at providing standardised information on government and expressing it in numbers. In Finland, the publicity of government information has been a concept of democratic connotations, but new internationally diffusing ideas of performance and national economic competitiveness are discussed under the notion of transparency and its peer concepts openness and public (sector) information, which are also newcomers to Finnish vocabulary of governing. The above concepts often conflict with one another, paving the way to unintended consequences for the reforms conducted in their name. Moreover, the study argues that the policy concerns over openness and public sector information are linked to the new drive for transparency. Drawing on theories of new institutionalism, political economy, and conceptual history, the study argues for a reinvention of Nordic openness in two senses. First, in referring to institutional history, the policy discourse of Nordic openness discovers an administrative tradition in response to new dilemmas of public governance. Moreover, this normatively appealing discourse also legitimizes the new ideational changes. Second, a former mechanism of democratic accountability is being reframed with market and performance ideas, mostly originating from the sphere of transnational governance and governance indices. Mobilizing different research techniques and data (public documents of the Finnish government and international organizations, some 30 interviews of Finnish civil servants, and statistical time series), the study asks how the above ideational changes have been possible, pointing to the importance of nationalistically appealing historical narratives and normative concepts of governing. Concerning institutional developments, the study analyses the ideational changes in central steering mechanisms (political, normative and financial steering) and the introduction of budget transparency and performance management in two cases: census data (Population Register Centre) and foreign political information (Ministry for Foreign Affairs). The new policy domain of governance indices is also explored as a type of transparency. The study further asks what institutional transformations are to be observed in the above cases and in the accountability system. The study concludes that while the information rights of citizens have been reinforced and recalibrated during the period under scrutiny, there has also been a conversion of institutional practices towards economic performance. As the discourse of Nordic openness has been rather unquestioned, the new internationally circulating ideas of transparency and the knowledge economy have entered this discourse without public notice. Since the mid 1990s, state registry data has been perceived as an exploitable economic resource in Finland and in the EU public sector information. This is a parallel development to the new drive for budget transparency in organisations as vital to the state as the Population Register Centre, which has led to marketization of census data in Finland, an international exceptionality. In the Finnish Ministry for Foreign Affairs, the post-Cold War rhetorical shift from secrecy to performance-driven openness marked a conversion in institutional practices that now see information services with high regards. But this has not necessarily led to the increased publicity of foreign political information. In this context, openness is also defined as sharing information with select actors, as a trust based non-public activity, deemed necessary amid the global economic competition. Regarding accountability system, deliberation and performance now overlap, making it increasingly difficult to identify to whom and for what the public administration is accountable. These evolving institutional practices are characterised by unintended consequences and paradoxes. History is a paradoxical component in the above institutional change, as long-term institutional developments now justify short-term reforms.
Resumo:
An optimal pitch steering programme of a solid-fuel satellite launch vehicle to maximize either (1) the injection velocity at a given altitude, or (2) the size of circular orbit, for a given payload is presented. The two-dimensional model includes the rotation of atmosphere with the Earth, the vehicle's lift and drag, variation of thrust with time and altitude, inverse-square gravitational field, and the specified initial vertical take-off. The inequality constraints on the aerodynamic load, control force, and turning rates are also imposed. Using the properties of the central force motion the terminal constraint conditions at coast apogee are transferred to the penultimate stage burnout. Such a transformation converts a time-free problem into a time-fixed one, reduces the number of terminal constraints, improves accuracy, besides demanding less computer memory and time. The adjoint equations are developed in a compact matrix form. The problem is solved on an IBM 360/44 computer using a steepest ascent algorithm. An illustrative analysis of a typical launch vehicle establishes the speed of convergence, and accuracy and applicability of the algorithm.
Resumo:
FRDC project 2008/306 Building economic capability to improve the management of marine resources in Australia was developed and approved in response to the widespread recognition and acknowledgement of the importance of incorporating economic considerations into marine management in Australia and of the persistent undersupply of suitably trained and qualified individuals capable of providing this input. The need to address this shortfall received broad based support and following widespread stakeholder consultation and building on previous unsuccessful State-based initiatives, a collaborative, cross-jurisdictional cross-institutional capability building model was developed. The resulting project sits within the People Development Program as part of FRDC’s ‘investment in RD&E to develop the capabilities of the people to whom the industry entrusts its future’, and has addressed its objectives largely through three core activities: 1. The Fisheries Economics Graduate Research Training Program which provides research training in fisheries/marine economics through enrolment in postgraduate higher degree studies at the three participating Universities; 2. The Fisheries Economics Professional Training Program which aims to improve the economic literacy of non-economist marine sector stakeholders and was implemented in collaboration with the Seafood Cooperative Research Centre through the Future Harvest Masterclass in Fisheries Economics; and, 3. The Australian Fisheries Economics Network (FishEcon) which aims to strengthen research in the area of fisheries economics by creating a forum in which fisheries economists, fisheries managers and Ph.D. students can share research ideas and results, as well as news of upcoming research opportunities and events. These activities were undertaken by a core Project team, comprising economic researchers and teachers from each of the four participating institutions (namely the University of Tasmania, the University of Adelaide, Queensland University of Technology and the Commonwealth Scientific and Industrial Research Organisation), spanning three States and the Commonwealth. The Project team reported to and was guided by a project Steering Committee. Commensurate with the long term nature of the project objectives and some of its activities the project was extended (without additional resources) in 2012 to 30th June 2015.
Resumo:
Reconfigurable antennas capable of radiating in only specific desired directions increase system functionality in applications like direction finding and beam steering. This paper presents the design simulation, fabrication and measurement of a horizontally polarized, direction reconfigurable Vivaldi antenna, designed for the lower-band UWB (2-6 GHz). This design employs eight circularly distributed independent Vivaldi antennas with a common port, electronically controlled by PIN diodes acting as RF switches. Experimental results show that the reconfigurable antenna has a bandwidth of 4 GHz (2-6 GHz), with 5 dB gain in the desired direction and capable of steering over the 360° range.
Resumo:
Antennas are a necessary and critical component of communications and radar systems, but their inability to adjust to new operating scenarios can sometimes limit the system performance. Reconfigurable antennas capable of radiating in only specific desired directions can ameliorate these restrictions and help to achieve increased functionality in applications like direction finding and beam steering. This paper presents the design simulation, fabrication and measurement of a wide-band, horizontally polarized, direction reconfigurable microstrip antenna operating at 2.45 GHz. The design employs a central horizontally polarized omnidirectional active element surrounded by electronically reconfigurable parasitic microstrip elements, controlled by PIN diodes acting as RF switches. Experimental results show that the reconfigurable antenna has a bandwidth of 40% (2-3 GHz), with 3 dB gain in the desired direction and capable of steering over the 360° range.
Resumo:
This paper describes a concept for a collision avoidance system for ships, which is based on model predictive control. A finite set of alternative control behaviors are generated by varying two parameters: offsets to the guidance course angle commanded to the autopilot and changes to the propulsion command ranging from nominal speed to full reverse. Using simulated predictions of the trajectories of the obstacles and ship, compliance with the Convention on the International Regulations for Preventing Collisions at Sea and collision hazards associated with each of the alternative control behaviors are evaluated on a finite prediction horizon, and the optimal control behavior is selected. Robustness to sensing error, predicted obstacle behavior, and environmental conditions can be ensured by evaluating multiple scenarios for each control behavior. The method is conceptually and computationally simple and yet quite versatile as it can account for the dynamics of the ship, the dynamics of the steering and propulsion system, forces due to wind and ocean current, and any number of obstacles. Simulations show that the method is effective and can manage complex scenarios with multiple dynamic obstacles and uncertainty associated with sensors and predictions.
Resumo:
Molecular machinery on the micro-scale, believed to be the fundamental building blocks of life, involve forces of 1-100 pN and movements of nanometers to micrometers. Micromechanical single-molecule experiments seek to understand the physics of nucleic acids, molecular motors, and other biological systems through direct measurement of forces and displacements. Optical tweezers are a popular choice among several complementary techniques for sensitive force-spectroscopy in the field of single molecule biology. The main objective of this thesis was to design and construct an optical tweezers instrument capable of investigating the physics of molecular motors and mechanisms of protein/nucleic-acid interactions on the single-molecule level. A double-trap optical tweezers instrument incorporating acousto-optic trap-steering, two independent detection channels, and a real-time digital controller was built. A numerical simulation and a theoretical study was performed to assess the signal-to-noise ratio in a constant-force molecular motor stepping experiment. Real-time feedback control of optical tweezers was explored in three studies. Position-clamping was implemented and compared to theoretical models using both proportional and predictive control. A force-clamp was implemented and tested with a DNA-tether in presence of the enzyme lambda exonuclease. The results of the study indicate that the presented models describing signal-to-noise ratio in constant-force experiments and feedback control experiments in optical tweezers agree well with experimental data. The effective trap stiffness can be increased by an order of magnitude using the presented position-clamping method. The force-clamp can be used for constant-force experiments, and the results from a proof-of-principle experiment, in which the enzyme lambda exonuclease converts double-stranded DNA to single-stranded DNA, agree with previous research. The main objective of the thesis was thus achieved. The developed instrument and presented results on feedback control serve as a stepping stone for future contributions to the growing field of single molecule biology.
Resumo:
Details of an efficient optimal closed-loop guidance algorithm for a three-dimensional launch are presented with simulation results. Two types of orbital injections, with either true anomaly or argument of perigee being free at injection, are considered. The resulting steering-angle profile under the assumption of uniform gravity lies in a canted plane which transforms a three-dimensional problem into an equivalent two-dimensional one. Effects of thrust are estimated using a series in a recursive way. Encke's method is used to predict the trajectory during powered flight and then to compute the changes due to actual gravity using two gravity-related vectors. Guidance parameters are evaluated using the linear differential correction method. Optimality of the algorithm is tested against a standard ground-based trajectory optimization package. The performance of the algorithm is tested for accuracy, robustness, and efficiency for a sun-synchronous mission involving guidance for a multistage vehicle that requires large pitch and yaw maneuver. To demonstrate applicability of the algorithm to a range of missions, injection into a geostationary transfer orbit is also considered. The performance of the present algorithm is found to be much better than others.
Resumo:
It is observed that general explicit guidance schemes exhibit numerical instability close to the injection point. This difficulty is normally attributed to the demand for exact injection which, in turn, calls for finite corrections to be enforced in a relatively short time. The deviations in vehicle state which need corrective maneuvers are caused by the off-nominal operating conditions. Hence, the onset of terminal instability depends on the type of off-nominal conditions encountered. The proposed separate terminal guidance scheme overcomes the above difficulty by minimizing a quadratic penalty on injection errors rather than demanding an exact injection. There is also a special requirement in the terminal phase for the faster guidance computations. The faster guidance computations facilitate a more frequent guidance update enabling an accurate terminal thrust cutoff. The objective of faster computations is realized in the terminal guidance scheme by employing realistic assumptions that are accurate enough for a short terminal trajectory. It is observed from simulations that one of the guidance parameters (P) related to the thrust steering angular rates can indicate the onset of terminal instability due to different off-nominal operating conditions. Therefore, the terminal guidance scheme can be dynamically invoked based on monitoring of deviations in the lone parameter P.
Resumo:
C17H19ClO, M(r) = 274.7, triclinic, P1BAR, a = 11.154 (3), b = 12.685 (2), c = 12.713 (2) angstrom, alpha = 100.68 (1), beta = 113.58 (1), gamma = 104.50 (2)-degrees, V = 1511.1 (6) angstrom3, Z = 4, D(m) = 1.22, D(x) = 1.215 Mg m-3, Cu K-alpha, lambda = 1.5418 angstrom, mu = 2.16 mm-1, F(000) = 584, T = 293 K, R = 0.057 for 3481 observed reflections. The title compound is photostable in the crystalline state and lattice-energy calculations have been employed to rationalize the photobehaviour. The well-known beta-steering ability of the chloro group is not operative in this system as there are no Cl...Cl interactions in the crystal lattice. All five benzylidene-DL-piperitone structures so far studied are alpha-packed and the molecular topology appears to be a deciding factor even in the presence of steering groups.
Resumo:
For a Cheby-bar shev array with a prescribed sidelobe level and given number of elements, an optimum spacing is shown to exist, for any arbitrarily prescribed steering angle, for which the beamwidth is the least obtainable. An expression for the optimum spacing is given.
Resumo:
Critical applications like cyclone tracking and earthquake modeling require simultaneous high-performance simulations and online visualization for timely analysis. Faster simulations and simultaneous visualization enable scientists provide real-time guidance to decision makers. In this work, we have developed an integrated user-driven and automated steering framework that simultaneously performs numerical simulations and efficient online remote visualization of critical weather applications in resource-constrained environments. It considers application dynamics like the criticality of the application and resource dynamics like the storage space, network bandwidth and available number of processors to adapt various application and resource parameters like simulation resolution, simulation rate and the frequency of visualization. We formulate the problem of finding an optimal set of simulation parameters as a linear programming problem. This leads to 30% higher simulation rate and 25-50% lesser storage consumption than a naive greedy approach. The framework also provides the user control over various application parameters like region of interest and simulation resolution. We have also devised an adaptive algorithm to reduce the lag between the simulation and visualization times. Using experiments with different network bandwidths, we find that our adaptive algorithm is able to reduce lag as well as visualize the most representative frames.
Resumo:
This paper presents a new approach for Optical Beam steering using 1-D linear arrays of curved wave guides as delay line. The basic structure for generating delay is the curved/bent waveguide and hence its Analytical modelling involves evaluation of mode profiles, propagation constants and losses become important. This was done by solving the dispersion equation of a bent waveguide with specific refractive index profiles. The phase shifts due to S-bends are obtained and results are compared with theoretical values. Simulations in 2-D are done using BPM and Matlab.
Resumo:
There are many biomechanical challenges that a female insect must meet to successfully oviposit and ensure her evolutionary success. These begin with selection of a suitable substrate through which the ovipositor must penetrate without itself buckling or fracturing. The second phase corresponds to steering and manipulating the ovipositor to deliver eggs at desired locations. Finally, the insect must retract her ovipositor fast to avoid possible predation and repeat this process multiple times during her lifetime. From a materials perspective, insect oviposition is a fascinating problem and poses many questions. Specifically, are there diverse mechanisms that insects use to drill through hard substrates without itself buckling or fracturing? What are the structure-property relationships in the ovipositor material? These are some of the questions we address with a model system consisting of a parasitoid fig wasp - fig substrate system. To characterize the structure of ovipositors, we use scanning electron microscopy with a detector to quantify the presence of transition elements. Our results show that parasitoid ovipositors have teeth like structures on their tips and contain high amounts of zinc as compared to remote regions. Sensillae are present along the ovipositor to aid detection of chemical species and mechanical deformations. To quantify the material properties of parasitoid ovipositors, we use an atomic force microscope and show that tip regions have higher modulus as compared to remote regions. Finally, we use videography to show that ovipositors buckle during oviposition and estimate the forces needed to cause substrate boring based on Euler buckling analysis. Such methods may be useful for the design of functionally graded surgical tools.