916 resultados para SISTEMAS DE FASE NO MINIMA
Resumo:
Produtos com um tempo considerável de utilização podem ser objeto de um processo de manutenção mais amplo e profundo, que visa prolongar a sua vida útil. O termo recuperação é aplicado a este tipo de manutenção, que visa à substituição de peças defeituosas, desgastadas, e/ou com a vida útil encerrada. O surgimento de novos paradigmas e de um novo conjunto de doutrinas operacionais pode mudar as expectativas e necessidades das partes interessadas de modo que o produto pode ser proposto para uma modernização. Assim, o produto pode ser reengenheirado durante a sua recuperação. Para realizar um projeto de recuperação e modernização, propõe-se uma abordagem em seis passos centrada numa decisão baseada no risco para classificar os componentes de acordo com a ação a ser realizada. A análise do produto é desenvolvida com base em técnicas de desmontagem e uma análise da fase operacional é realizada para as tomadas de decisões. Deste modo, um componente pode sofrer manutenção, ser modernizado, ser excluído, ser inserido ou permanecer fora do escopo dos trabalhos. O processo da gestão baseada em risco também inclui duas fases de monitoramento de risco continuado: durante a produção e na fase de operação. As decisões podem ser revistas pelo uso da análise bayesiana. Um estudo de caso é proposto para ilustrar o modelo num programa de recuperação e modernização de veículos blindados realizada numa unidade do Exército Brasileiro. A aplicação da metodologia permitiu a seleção de uma alternativa de modernização, considerando riscos e benefícios. O desdobramento das análises no projeto detalhado permitiu a definição final do escopo de recuperação e modernização, observando efeitos de propagação de alterações de engenharia. A principal contribuição deste trabalho é a formalização de um estudo da recuperação e modernização como projeto específico, descrevendo suas características de uma forma a permitir a aplicação de um modelo baseado em risco.
Resumo:
Entrenar el proceso de medida y ajuste de sistemas de refuerzo sonoro en entornos universitarios presenta claros problemas de infraestructura, pues cada estudiante debería tener acceso a un sistema de refuerzo, un sistema de medida y un sistema de procesado. Los sistemas virtuales, si están diseñados cuidadosamente permiten, si no prescindir de los sistemas reales, tener una fase previa de experimentación que puede solventar, aunque sea en parte, las carencias de infraestructura mencionadas. En este trabajo se explora la posibilidad de emplear un sistema virtual, basado en medidas sobre un sistema real, para entrenar los procedimientos de ajuste de sistemas de refuerzo sonoro.
Resumo:
O presente trabalho tem como base um estágio na entidade gestora INOVA-EM-S.A. a fim de reduzir a água não faturada. O estudo forcar-se-á especificamente nas perdas de água, às quais se dará uma maior importância às perdas reais. Este tema assume grande importância, notando-se cada vez mais, a consciência para este problema que afeta as entidades gestoras de todo o mundo. A nível nacional, a entidade reguladora - ERSAR define como principal alvo o valor de 20% de água não faturada, valor este que se tem revelado bastante inferior ao verificado para a realidade de várias entidades gestoras. Numa primeira fase, por forma a reduzir as perdas de água, será analisado todo o sistema de abastecimento de água do concelho de Cantanhede nomeadamente reservatórios, condutas, consumidores e os respetivos consumos. Posteriormente serão analisados todos os dados dos consumidores, bem como os das ZMCs presentes, resultando na elaboração de indicadores. Estes indicadores serão importantes para a tomada de decisão sobre qual ZMC intervir, e também aqui será essencial a análise dos caudais mínimos noturnos resultante do processo de telemetria. A escolha da zona de medição crítica será consequência dos valores referentes aos indicadores anteriormente referidos, assim como do tempo necessário para o estudo e todo o processo de atuação nesta ZMC. A ZMC (Bolho) escolhida será alvo de campanhas de deteção e intervenção, com a finalidade da redução das perdas reais, entretanto, paralelamente a este processo, será revisto todo o parque de contadores procedendo à verificação e mesmo à substituição de alguns contadores, combatendo assim parte das perdas aparentes. Estes processos serão acompanhados com a monitorização constante permitindo assim a verificação das medidas tomadas. Posteriormente serão abandonadas as intervenções, dando lugar a intervenções pontuais a realizar apenas quando necessário, mantendo a monitorização constante durante este período. Verificou-se que os indicadores, bem como os caudais mínimos noturnos subiram de forma considerável. Mais tarde será realizada uma nova campanha de deteção de fugas, desta vez não tão exaustiva como a anterior. Esta campanha será realizada com vista a analisar o estado da ZMC depois de realizado todo este processo exaustivo de intervenções. Como resultado desta segunda campanha serão identificados novos locais com roturas, locais que anteriormente na primeira campanha não foram destacados como locais a intervir por não apresentarem indícios de rotura ou fuga de água.
Resumo:
Among the potentially polluting economic activities that compromise the quality of soil and groundwater stations are fuel dealers. Leakage of oil derived fuels in underground tanks or activities improperly with these pollutants can contaminate large areas, causing serious environmental and toxicological problems. The number of gas stations grew haphazardly, without any kind of control, thus the environmental impacts generated by these enterprises grew causing pollution of soil and groundwater. Surfactants using various techniques have been proposed to remedy this kind of contamination. This study presents innovation as the application of different systems containing surfactant in the vapor phase and compares their diesel removal efficiencies of soil containing this contaminant. For this, a system that contains seven injection wells the following vaporized solutions: water, surfactant solution, microemulsion and nanoemulsion, The surfactants used were saponified coconut oil (OCS), in aqueous solution and an ethoxylated alcohol UNTL-90: aqueous solution , and nanoemulsion and microemulsion systems. Among the systems investigated, the nanoemulsion showed the highest efficiency, achieving 88% removal of residual phase diesel, the most ecologically and technically feasible by a system with lower content of active matter
Resumo:
The purpose of this research is to analyze different daylighting systems in schools in the city of Natal/RN. Although with the abundantly daylight available locally, there are a scarce and diffuse architectural recommendations relating sky conditions, dimensions of daylight systems, shading, fraction of sky visibility, required illuminance, glare, period of occupation and depth of the lit area. This research explores different selected apertures systems to explore the potential of natural light for each system. The method has divided into three phases: The first phase is the modeling which involves the construction of three-dimensional model of a classroom in Sketchup software 2014, which is featured in follow recommendations presented in the literature to obtain a good quality of environmental comfort in school settings. The second phase is the dynamic performance computer simulation of the light through the Daysim software. The input data are the climate file of 2009 the city of Natal / RN, the classroom volumetry in 3ds format with the assignment of optical properties of each surface, the sensor mapping file and the user load file . The results produced in the simulation are organized in a spreadsheet prepared by Carvalho (2014) to determine the occurrence of useful daylight illuminance (UDI) in the range of 300 to 3000lux and build graphics illuminance curves and contours of UDI to identify the uniformity of distribution light, the need of the minimum level of illuminance and the occurrence of glare.
Resumo:
Triamcinolone is a relevant anti-inflammatory costicosteroid drug, used mainly by injectable suspensions due its poor water solubility. The association of triamcinolone with cyclodextrins and co-solvents (triethanolamine TEA and N-methylpirrolidone NMP) was held to solubilize the drug and explain the involved interactions. Phase-solubility diagrams showed that triamcinolone was solubilized forming incredible stable complexes with cyclodextrins, in which bests results were observed applying randomyl-methylated-beta-cyclodextrin (RMβCD) (161 fold on increased solubility). The co-solvents TEA and NMP also enhanced drug solubility 1.4 and 6.7 fold, respectively. The association of both co-solvents with CDs seems decreased complexation stability, but enables higher amount of uncomplexed drug. Experimental magnetic resonance 2D-ROESY and theoretical molecular modeling studies demonstrated TRI-CDs interactions and elucidated the structure of formed complex, which occurred due to the inclusion of ring A of TRI on CDs cavity. Physicochemical aspects of solid binary and ternary complexes prepared by spray drying were assessed by using FTIR, X-ray diffraction and SEM photographs. Dissolution studies showed that binary and ternary associations presented higher dissolution efficacy in detrimental to pure drug system. In addition, the ternary complex containing TEA and RMβCD allowed drug dissolution faster than binary complex with RMβCD. Therefore, given the higher solubility and drug dissolution rate, binary and ternary complexes are new raw materials with great potential for pharmaceuticals containing triamcinolone.
Resumo:
Various physical systems have dynamics that can be modeled by percolation processes. Percolation is used to study issues ranging from fluid diffusion through disordered media to fragmentation of a computer network caused by hacker attacks. A common feature of all of these systems is the presence of two non-coexistent regimes associated to certain properties of the system. For example: the disordered media can allow or not allow the flow of the fluid depending on its porosity. The change from one regime to another characterizes the percolation phase transition. The standard way of analyzing this transition uses the order parameter, a variable related to some characteristic of the system that exhibits zero value in one of the regimes and a nonzero value in the other. The proposal introduced in this thesis is that this phase transition can be investigated without the explicit use of the order parameter, but rather through the Shannon entropy. This entropy is a measure of the uncertainty degree in the information content of a probability distribution. The proposal is evaluated in the context of cluster formation in random graphs, and we apply the method to both classical percolation (Erd¨os- R´enyi) and explosive percolation. It is based in the computation of the entropy contained in the cluster size probability distribution and the results show that the transition critical point relates to the derivatives of the entropy. Furthermore, the difference between the smooth and abrupt aspects of the classical and explosive percolation transitions, respectively, is reinforced by the observation that the entropy has a maximum value in the classical transition critical point, while that correspondence does not occurs during the explosive percolation.
Resumo:
Various physical systems have dynamics that can be modeled by percolation processes. Percolation is used to study issues ranging from fluid diffusion through disordered media to fragmentation of a computer network caused by hacker attacks. A common feature of all of these systems is the presence of two non-coexistent regimes associated to certain properties of the system. For example: the disordered media can allow or not allow the flow of the fluid depending on its porosity. The change from one regime to another characterizes the percolation phase transition. The standard way of analyzing this transition uses the order parameter, a variable related to some characteristic of the system that exhibits zero value in one of the regimes and a nonzero value in the other. The proposal introduced in this thesis is that this phase transition can be investigated without the explicit use of the order parameter, but rather through the Shannon entropy. This entropy is a measure of the uncertainty degree in the information content of a probability distribution. The proposal is evaluated in the context of cluster formation in random graphs, and we apply the method to both classical percolation (Erd¨os- R´enyi) and explosive percolation. It is based in the computation of the entropy contained in the cluster size probability distribution and the results show that the transition critical point relates to the derivatives of the entropy. Furthermore, the difference between the smooth and abrupt aspects of the classical and explosive percolation transitions, respectively, is reinforced by the observation that the entropy has a maximum value in the classical transition critical point, while that correspondence does not occurs during the explosive percolation.
Resumo:
Binary systems are key environments to study the fundamental properties of stars. In this work, we analyze 99 binary systems identified by the CoRoT space mission. From the study of the phase diagrams of these systems, our sample is divided into three groups: those whose systems are characterized by the variability relative to the binary eclipses; those presenting strong modulations probably due to the presence of stellar spots on the surface of star; and those whose systems have variability associated with the expansion and contraction of the surface layers. For eclipsing binary stars, phase diagrams are used to estimate the classification in regard to their morphology, based on the study of equipotential surfaces. In this context, to determine the rotation period, and to identify the presence of active regions, and to investigate if the star exhibits or not differential rotation and study stellar pulsation, we apply the wavelet procedure. The wavelet transform has been used as a powerful tool in the treatment of a large number of problems in astrophysics. Through the wavelet transform, one can perform an analysis in time-frequency light curves rich in details that contribute significantly to the study of phenomena associated with the rotation, the magnetic activity and stellar pulsations. In this work, we apply Morlet wavelet (6th order), which offers high time and frequency resolution and obtain local (energy distribution of the signal) and global (time integration of local map) wavelet power spectra. Using the wavelet analysis, we identify thirteen systems with periodicities related to the rotational modulation, besides the beating pattern signature in the local wavelet map of five pulsating stars over the entire time span.
Resumo:
Binary systems are key environments to study the fundamental properties of stars. In this work, we analyze 99 binary systems identified by the CoRoT space mission. From the study of the phase diagrams of these systems, our sample is divided into three groups: those whose systems are characterized by the variability relative to the binary eclipses; those presenting strong modulations probably due to the presence of stellar spots on the surface of star; and those whose systems have variability associated with the expansion and contraction of the surface layers. For eclipsing binary stars, phase diagrams are used to estimate the classification in regard to their morphology, based on the study of equipotential surfaces. In this context, to determine the rotation period, and to identify the presence of active regions, and to investigate if the star exhibits or not differential rotation and study stellar pulsation, we apply the wavelet procedure. The wavelet transform has been used as a powerful tool in the treatment of a large number of problems in astrophysics. Through the wavelet transform, one can perform an analysis in time-frequency light curves rich in details that contribute significantly to the study of phenomena associated with the rotation, the magnetic activity and stellar pulsations. In this work, we apply Morlet wavelet (6th order), which offers high time and frequency resolution and obtain local (energy distribution of the signal) and global (time integration of local map) wavelet power spectra. Using the wavelet analysis, we identify thirteen systems with periodicities related to the rotational modulation, besides the beating pattern signature in the local wavelet map of five pulsating stars over the entire time span.
Resumo:
Sandstone-type reservoir rocks are commonly responsible for oil accumulation. The wettability is an important parameter for the physical properties of the container, since it interferes in characteristics such as relative permeability to the aqueous phase, residual oil distribution in the reservoir, operating characteristics with waterflood and recovery of crude oil. This study applied different types of microemulsion systems - MES - in sandstone reservoirs and evaluated their influences on wettability and residual oil recovery. For this purpose, four microemulsion were prepared by changing the nature of ionic surfactants (ionic and nonionic). Microemulsions could then be characterized by surface tension analysis, density, particle diameter and viscosity in the temperature range 30° C to 70° C. The studied oil was described as light and the sandstone rock was derived from the Botucatu formation. The study of the influence of microemulsion systems on sandstone wettability was performed by contact angle measurements using as parameters the rock treatment time with the MES and the time after the brine surface contact by checking the angle variation behavior. In the study results, the rock was initially wettable to oil and had its wettability changed to mixed wettability after treatment with MES, obtaining preference for water. Regarding rock-MES contact time, it was observed that the rock wettability changed more when the contact time between the surface and the microemulsion systems was longer. It was also noted only a significant reduction for the first 5 minutes of interaction between the treated surface and brine. The synthesized anionic surfactant, commercial cationic, commercial anionic and commercial nonionic microemulsion systems presented the best results, respectively. With regard to enhanced oil recovery performance, all systems showed a significant percentage of recovered oil, with the anionic systems presenting the best results. A percentage of 80% recovery was reached, confirming the wettability study results, which pointed the influence of this property on the interaction of fluids and reservoir rock, and the ability of microemulsion systems to perform enhanced oil recovery in sandstone reservoirs.
Resumo:
Sandstone-type reservoir rocks are commonly responsible for oil accumulation. The wettability is an important parameter for the physical properties of the container, since it interferes in characteristics such as relative permeability to the aqueous phase, residual oil distribution in the reservoir, operating characteristics with waterflood and recovery of crude oil. This study applied different types of microemulsion systems - MES - in sandstone reservoirs and evaluated their influences on wettability and residual oil recovery. For this purpose, four microemulsion were prepared by changing the nature of ionic surfactants (ionic and nonionic). Microemulsions could then be characterized by surface tension analysis, density, particle diameter and viscosity in the temperature range 30° C to 70° C. The studied oil was described as light and the sandstone rock was derived from the Botucatu formation. The study of the influence of microemulsion systems on sandstone wettability was performed by contact angle measurements using as parameters the rock treatment time with the MES and the time after the brine surface contact by checking the angle variation behavior. In the study results, the rock was initially wettable to oil and had its wettability changed to mixed wettability after treatment with MES, obtaining preference for water. Regarding rock-MES contact time, it was observed that the rock wettability changed more when the contact time between the surface and the microemulsion systems was longer. It was also noted only a significant reduction for the first 5 minutes of interaction between the treated surface and brine. The synthesized anionic surfactant, commercial cationic, commercial anionic and commercial nonionic microemulsion systems presented the best results, respectively. With regard to enhanced oil recovery performance, all systems showed a significant percentage of recovered oil, with the anionic systems presenting the best results. A percentage of 80% recovery was reached, confirming the wettability study results, which pointed the influence of this property on the interaction of fluids and reservoir rock, and the ability of microemulsion systems to perform enhanced oil recovery in sandstone reservoirs.
Resumo:
CHAPTER 1 - The gummy stem blight, caused by the fungus D. bryoniae, is a disease commonly found in watermelon cultivated in several countries. In Brazil, there are numerous studies related to the disease, but there are not uniform methods for quantifying of disease severity in the field. Thus, we developed a diagrammatic scale based on scanned photos of watermelon leaves infected with D. bryoniae. The scale developed showed levels of 0; 10; 20; 45; 65 and 90% of severity. The scale validation was divided into two parts: initially, 10 evaluators (half with experienced and other half without experience) estimated the disease severity based on the initial observation of 100 photos of watermelon leaves with symptoms of the disease at different severity levels. Before, the same evaluators estimated the disease severity with the support of the scale prepared from the Quant program. Data were analyzed using linear regression and were obtained angular, linear, and correlation coefficients. Based on these data, we determined the accuracy and precision of the evaluations. The correlation coefficients (R2) ranged from 0.88 - 0.97 for the experienced evaluators and from 0.55 - 0.95 for the inexperienced evaluators. The average angular coefficient (A) for inexperienced evaluators was 20.42 and 8.61 with and without the support of diagrammatic scale, respectively. Experienced evaluators showed values of average linear coefficient of 5.30 and 1.68 with and without the support of diagrammatic scale, respectively. The absolute errors analysis indicated that the use of diagrammatic scale contributed to minimize the flaws in the severity levels estimation. The diagrammatic scale proposed shown adequate for gummy stem blight severity evaluation in watermelon. CHAPTER 2 - The gummy stem blight (Didymella bryoniae) is a disease that affects the productivity of watermelon leading to losses over 40%. This study aimed to evaluate the efficiency of different production systems in control of gummy stem blight in watermelon for to establish efficient methods to combat the disease. There were applied the following treatments: conventional tillage (T1), integrated management (T2) and organic management (T3). In T1 and T2 were applied mineral fertilization and T3 was used bovine manure. There was application of fungicides and insecticides in commercial dose in T1 and T2, being after soil chemical analysis in T2. Disease severity was assessed by grading scale. The experimental design was randomized blocks. The severity of gummy stem blight has increased substantially during the fruit formation. Watermelon plants grown with integrated management (T2) showed lower levels of disease severity, while plants in organic management (T3) exhibited higher levels of severity. We conclude that management based on judicious accompaniments in field represents best way to achieve the phytosanitary aspect adequate for cultivation of watermelon in Tocantins.
Resumo:
This paper makes a comparative study of two Soft Single Switched Quadratic Boost Converters (SSS1 and SSS2) focused on Maximum Power Point Tracking (MPPT) of a PV array using Perturb and Observe (P&O) algorithm. The proposed converters maintain the static gain characteristics and dynamics of the original converter with the advantage of considerably reducing the switching losses and Electromagnetic Interference (EMI). It is displayed the input voltage Quadratic Boost converter modeling; qualitative and quantitative analysis of soft switching converters, defining the operation principles, main waveforms, time intervals and the state variables in each operation steps, phase planes of resonant elements, static voltage gain expressions, analysis of voltage and current efforts in semiconductors and the operational curves at 200 W to 800 W. There are presented project of PI, PID and PID + Notch compensators for MPPT closed-loop system and resonant elements design. In order to analyze the operation of a complete photovoltaic system connected to the grid, it was chosen to simulate a three-phase inverter using the P-Q control theory of three-phase instantaneous power. Finally, the simulation results and experimental with the necessary comparative analysis of the proposed converters will be presented.
Resumo:
Grande parte da energia contida no combustível consumido por um motor de combustão interna é desperdiçada sob forma de calor, através do sistema de refrigeração do motor, do sistema de recirculação dos gases de escape e principalmente através dos gases de escape. Daí o interesse no estudo de sistemas que permitem o aproveitamento dessa energia residual dos veículos automóveis. Este trabalho centra-se no estudo de sistemas de aproveitamento da energia térmica contida nos gases de escape dos veículos automóveis, sendo o objetivo principal o estudo do permutador de calor que será utilizado para recuperação da energia térmica. Existem vários tipos de permutadores, na sua escolha entram fatores como as características dos fluidos de trabalho envolvidos, o custo, facilidade de manutenção, a aplicação. Para o caso deste estudo selecionou-se um permutador de carcaça e tubos e um permutador de tubos concêntricos. Uma vez que a seleção e otimização de um permutador de calor implica a minimização da perda de carga dos gases de escape e a maximização da eficiência térmica do sistema, numa primeira fase selecionou-se a geometria mais adequada. Em seguida fez-se uma comparação de diferentes modelos de cálculo da perda de carga e analisou-se o desempenho termo hidráulico do permutador. Por fim realizou-se um estudo paramétrico para verificar a influência dos parâmetros de construção (número de tubos, diâmetro e comprimento dos tubos).