944 resultados para Radioisotope scanning.
Resumo:
Redescription of Balantidium ctenopharyngodoni "Chen (Acta Hydrobiol Sin 1:123-164, 1955)", collected from the hindgut of grass carp (Ctenopharyngodon idella), especially the segment of 6-10 cm upstream from the anus, from Honghu Lake, Hubei Province, central China in November 2005, is presented in this paper to complete Chen's description at both light and scanning electron microscopic levels. Some revisions were done: the vestibulum is fairly symmetrical, with compactly arranged cilia rather than assembled membrane bordering on the left vestibular side; four contractile vacuoles actually exist in the latter body, three of which surround the posterior portion of the macronucleus, whereas the fourth lies antero-left to it. Somatic monokinetids were compared among the species of genus Balantidium. The cysts were described, and possible infection routes of B. ctenopharyngodoni were also discussed.
Resumo:
Functionalized graphene is a versatile material that has well-known physical and chemical properties depending on functional groups and their coverage. However, selective control of functional groups on the nanoscale is hardly achievable by conventional methods utilizing chemical modifications. We demonstrate electrical control of nanoscale functionalization of graphene with the desired chemical coverage of a selective functional group by atomic force microscopy (AFM) lithography and their full recovery through moderate thermal treatments. Surprisingly, our controlled coverage of functional groups can reach 94.9% for oxygen and 49.0% for hydrogen, respectively, well beyond those achieved by conventional methods. This coverage is almost at the theoretical maximum, which is verified through scanning photoelectron microscope measurements as well as first-principles calculations. We believe that the present method is now ready to realize 'chemical pencil drawing' of atomically defined circuit devices on top of a monolayer of graphene. © 2014 Nature Publishing Group All rights reserved.
Resumo:
Two species of aspidogastreans, namely Aspidogaster ijimai and A. conchicola, were studied by scanning electron microscopy. In nine lakes and an old river course, the Tian'ezhou oxbow, investigated in the flood plain of the Yangtze River, A. ijimai was obtained from the common carp (Cyprinus carpio) in three lakes, and A. conchicola from the black carp Mylopharyngodon piceus in three lakes and the oxbow. In none of the localities, however, were the two species found together. It is suggested that A. ijimai may be considered as a specialist parasite for the common carp, at least in the flood-plain lakes of the Yangtze River. The two parasites were similar in many aspects of their morphology. Their bodies can both be separated into a dorsal part and a ventral disc, with the body surface of the dorsal part elevated by transverse folds, and the disc subdivided into alveoli by transverse and longitudinal septa, although the number of alveoli was different in the two species. The depression on the ventral surface of the neck region was prominent for both species, and their ventral disc was covered densely with non-ciliated bulbous papillae. The position of mouth, osmo-regulatory pore and marginal organ was also similar for A. ijimai and A. conchicola. However, microridges in the trough of the folds in the neck region and numerous small pits on the upper part of the septa were found exclusively in A. ijimai, but uniciliated sensory papillae in A. conchicola.
Resumo:
Self-assembled InAs/AlAs quantum dots embedded in a resonant tunneling diode device structure are grown by molecular beam epitaxy. Through the selective etching in a C6H8O7 center dot H2O-K3C6H5O7 center dot H2O-H2O2 buffer solution, 310 nm GaAs capping layers are removed and the InAs/AlAs quantum dots are observed by field-emission scanning electron microscopy. It is shown that as-fabricated quantum dots have a diameter of several tens of nanometers and a density of 10(10) cm(-2) order. The images taken by this means are comparable or slightly better than those of transmission electron microscopy. The undercut of the InAs/AlAs layer near the edges of mesas is detected and that verifies the reliability of the quantum dot images. The inhomogeneous oxidation of the upper AlAs barrier in H2O2 is also observed. By comparing the morphologies of the mesa edge adjacent regions and the rest areas of the sample, it is concluded that the physicochemical reaction introduced in this letter is diffusion limited.
Resumo:
In this paper, we analyze light transmission through a single subwavelength slit surrounded by periodic grooves in layered films consisting of An and dielectric material. A subwavelength grating is scanned numerically by the finite difference time domain method in two dimensions. The results show that the transmission field can be confined to a spot with subwavelength width in the far field and can be useful in the application of a high-resolution far-field scanning optical microscope.
Resumo:
A near-field scanning optical microscopy (NSOM) system employing a very-small-aperture laser (VSAL) as an active probe is reported in this Letter. The VSAL in our experiment has an aperture size of 300 nmx300 nm and a near-field spot size of about 600 nm. The resolution of the NSOM system with the VSAL can reach about 600 nm, and even 400 nm. Considering the high output power of the VSAL, such a NSOM system is a potentially useful tool for nanodetection, data storage, nanolithography, and nanobiology.
Resumo:
We present a novel contactless and nondestructive method called the surface electron beam induced voltage (SEBIV) method for characterizing semiconductor materials and devices. The SEBIV method is based on the detection of the surface potential induced by electron beams of scanning electron microscopy (SEM). The core part of the SEBIV detection set-up is a circular metal detector placed above the sample surface. The capacitance between the circular detector and whole surface of the sample is estimated to be about 0.64 pf It is large enough for the detection of the induced surface potential. The irradiation mode of electron beam (e-beam) influences the signal generation. When the e-beam irradiates on the surface of semiconductors continuously, a differential signal is obtained. The real distribution of surface potentials can be obtained when a pulsed e-beam with a fixed frequency is used for irradiation and a lock-in amplifier is employed for detection. The polarity of induced potential depends on the structure of potential barriers and surface states of samples. The contrast of SEBIV images in SEM changes with irradiation time and e-beam intensity.
Resumo:
Cubic AlGaN films were grown on GaAs(100) substrates by MOVPE. Scanning electron microscope and photoluminescence were used to analyze the surface morphology and the crystalline quality of the epitaxial layers. We found that both NH, and TEGa fluxes have a strong effect on the surface morphology of AlGaN films. A model for the lateral growth mechanism is presented to qualitatively explain this effect. The content of hexagonal AlGaN in the cubic AlGaN films was also related to the NH3 flux. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A simple photon scanning tunneling microscope (PSTM) is described. Its lateral resolution (similar to 10nm with a maximal scanning range of 10 mu m x 10 mu m ) is much better than that of a conventional optical microscope. Its principle, the fiber optic tip fabrication and PSTM images of different samples such as mica, HDPE and LiNbO3 are presented.
Resumo:
The size and distribution of surface features of porous silicon layers have been investigated by scanning tunneling and atomic force microscopy. Pores and hillocks down to 1-2 nm size were observed, with their shape and distribution on the sample surface being influenced by crystallographic effects. The local density of electronic states show a strong increase above 2 eV, in agreement with recent theoretical predictions.
Resumo:
The principle of optical scanning holography with circular gratings (CG) as the scanning field is presented. The generation and reconstruction processes of the scanning holography are described. These processes are numerical simulated by computer and the results are achieved. It is shown that the resolution power of the reconstructed image of CG scanning hologram is higher than that of FZP scanning hologram.