423 resultados para QM
Resumo:
The photoluminescence (PL) response of porous silicon is usually in the form of a single broad peak. Recently, however, PL response with two peaks has been reported. Here we report the observation of multiple peaks in the PL spectrum of porous silicon. A simple modeling of the line shape indicates that four peaks exist within the response curve, and analysis suggests that the PL of porous silicon is derived from quantum confinement in the silicon crystallites. The line shapes can be due to either minibands within the conduction and valence bands or crystallite size variation or a combination of the two.
OPTICAL CHARACTERISTICS OF GAAS/ALGAAS RIDGE-QUANTUM-WELL-WIRES GROWN BY MBE ON NONPLANAR SUBSTRATES
Resumo:
With conventional photolithography and wet chemical etching, we have realized GaAs/AlGaAs buried ridge-quantum-well-wires (RQWWs) with vertically stacked wires in lateral arrays promising for device application, which were grown in situ by a single-step molecular beam epitaxy growth and formed at the ridge tops of mesas on nonplanar substrates. Confocal photoluminescence (CPL) and polarization-dependent photoreflectance (PR) are applied to study optical characteristics of RQWWs. Lateral bandgap modulation due to lateral variation of QW layer thickness is demonstrated not only by CPL but also by PR. As one evidence for RQWWs, a large blue shift is observed at the energy level positions for electronic transitions corresponding to quantum wells (QWs) at the ridge tops of mesas compared with those corresponding to QWs on nonpatterned areas of the same sample. The blue shift is in contradiction with the fact that the GaAs QW layers at the tops of the mesas are thicker than those on nonpatterned areas. The other evidence for RQWWs, optical anisotropy is provided by the polarization-dependent PR, which results from lateral quantum size effect existing at the tops of the mesas.
Resumo:
GaAs single crystals have been grown under high gravity conditions, up to 9g0, by a recrystallization method with decreasing temperature. The impurity striations in GaAs grown under high gravity become weak and indistinct with smaller striation spacings. The dislocation density of surcharge-grown GaAs increases with increase of centrifugal force. The cathodoluminescence results also show worse perfection in the GaAs grown at high gravity than at normal earth gravity.
OPTICAL BISTABILITY IN A GAAS/GAALAS MULTI-QUANTUM-WELL (MQW) SELF-ELECTROOPTIC EFFECT DEVICE (SEED)
Resumo:
Based on a GaAs/GaAlAs MQW pin structure grown by a home-made MBE system, we have successfully fabricated a SEED. The optical bistability and related properties of the device under symmetric operation (S-SEED) and asymmetric operation are reported.
Resumo:
The characteristics of the steady-state and the transient response to external light excitation of a common-cavity two-section (CCTS) bistable semiconductor laser is investigated. The results on the relation of light output versus light input, the wavelength match, optical amplification and optical switching are presented. Experimental results are compared to the results of a computer simulation.
Resumo:
Because of Si-Ge interdiffusion in the Si-SiGe interface during the growth process, the square-wave refractive index distribution of a SiGe-Si multiple-quantum-web (MQW) will become smooth. In order to simulate the actual refractive index profile, a staircase approximation is applied. Based on this approach, the dispersion equation of the MQW waveguide is obtained by using a transfer matrix method, The effects of index changes caused by the interdiffusion on the optical field and the characteristics of the photodetector are evaluated by solving the dispersion equation, It is shown that the Si-Ge interdiffusion can result in a reduction of the effective absorption coefficient and the quantum efficiency.
Resumo:
ErSi1.7 layers with high crystalline quality (chi(min) of Er is 1.5%) have been formed by 90 keV Er ion implantation to a dose of 1.6X10(17)/cm(2) at 450 degrees C using channeled implantation. The perpendicular and parallel elastic strain e(perpendicular to)=-0.94%+/-0.02% and e(parallel to)=1.24%+/-0.08% of the heteroepitaxial erbium silicide layers have been measured with symmetric and asymmetric x-ray reflections using a double-crystal x-ray diffractometer. The deduced tetragonal distortion e(T(XRD))=e(parallel to)-e(perpendicular to)=2.18%+/-0.10%, which is consistent with the value e(T(RBS))2.14+/-0.17% deduced from the Rutherford backscattering and channeling measurements. The quasipseudomorphic growth of the epilayer and the stiffness along a and c axes of the epilayer deduced from the x-ray diffraction are discussed.
Resumo:
Photo-luminescence and electro-luminescence from step-graded index SiGe/Si quantum well grown by molecular beam epitaxy is reported. The SiGe/Si step-graded index quantum well structure is beneficial to the enhancing of electro-luminescence. The optical and electrical properties of this structure are discussed.
Resumo:
An effective coupling efficient is introduced for gain-coupled distributed feedback lasers with absorptive grating. When radiation and other partial wave coupling effects are considered, the effective coupling coefficient will change significantly. In some cases, it will become real, although both loss and index coupling are presented.
Resumo:
Effective cavity length method is introduced to vertical cavity surface emitting laser for characterizing some properties, including reflectivity FWHM, mode wavelength and threshold gain. Some experiment results are demonstrated, showing the agreement of theoretical analysis with experiment.
Resumo:
Photoluminescence studies on porous silicon show that there are luminescence centers present in the surface states. By taking photoluminescence spectra of porous silicon with respect to temperature, a distinct peak can be observed in the temperature range 100-150 K. Both linear and nonlinear relationships were observed between excitation laser power and the photoluminescence intensity within this temperature range. In addition, there was a tendency for the photoluminescence peak to red shift at low temperature as well as at low excitation power. This is interpreted as indicating that the lower energy transition becomes dominant at low temperature and excitation power. The presence of these luminescence centers can be explained in terms of porous silicon as a mixture of silicon clusters and wires in which quantum confinement along with surface passivation would cause a mixing of Gamma and X band structure between the surface states and the bulk. This mixing would allow the formation of luminescence centers.