888 resultados para Porous precipitated SiO2
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents the synthesis and characterization of SiO2:metal (Ni, Co, Ag, and Fe) nanocomposites processed by the polymerizable complex method. The polymeric precursor solutions obtained were characterized by means of FT-Raman and C-13 NMR spectroscopy. The results show the formation of a hybrid polymer with carbon and silicon in the macromolecule chain and the transition metal cation arrested within this polymeric chain. The nanocomposites are formed during the controlled polymeric precursor pyrolysis. The reduction of the metal cation is promoted by the CO/CO2 atmosphere resulting from the pyrolysis of the organic material. Microstructural characterization, performed by TEM and X-ray diffraction (XRD), showed that the nanocomposites are formed by metal nanoparticles embedded in a amorphous matrix formed by SiO2 and carbon. In the SiO2:Fe system, Fe3C was also detected by XRD.
Resumo:
The total and partially purified enzyme pectinmethylesterase from acerola fruit was covalently immobilized on porous silica particles. These efficiency values were 114% for the total PME and 351% for the partially purified PME. In both forms the immobilization resulted in compounds with high thermal stability.
Resumo:
SrBi2Nb2O9 (SBN) thin films were prepared by the polymeric precursors method and deposited by dip coating onto Pt/Ti/SiO2/Si(100) substrates. The dip-coated films were specular and crack-free and crystallized during firing at 700 degrees C. Microstructure and morphological evaluation were followed by grazing incident X-ray diffraction (GIXRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The films exhibited somewhat porous grain structure with rounded grains of about 100 nm. For the electrical measurements, gold electrodes of 300 mu m in diameter were sputter deposited on the top surface, forming a metal-ferroelectric-metal (MFM) configuration. The remanent polarization (P-r) and coercive field (E-c) were 5.6 mu C/cm(2) and 100 kV/cm, respectively. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
c-axis oriented Bi3.25La0.75Ti3O12 (BLT) thin films were grown on a RuO2 top electrode deposited on a (100) SiO2/Si substrate by the polymeric precursor method. X-ray diffraction and atomic force microscope investigations indicate that the films exhibit a dense, well crystallized microstructure having random orientations with a rather smooth surface morphology. The electrical properties of preferred oriented Bi3.25La0.75Ti3O12 (BLT) thin films deposited on RuO2 bottom electrode leaded to a large remnant polarization (P-r ) of 17.2 mu C/cm(2) and (V-c ) of 1.8 V, fatigue free characteristics up to 10(10) switching cycles and a current density of 2.2 mu A/cm(2) at 5 V. We found that the polarization loss is insignificant with nine write/read voltages at a waiting time of 10,000 s. Independently of the applied electric field the retained switchable polarization approached a nearly steady-state value after a retention time of 10 s.
Resumo:
In this work, the effect of the substrate microstructure on the formation of SnO2 membranes and of the sintering conditions on their porosity have been analysed. Samples have been prepared by colloidal suspensions cast on alumina or kaolin substrates. Supported membranes have been characterized by Hg porosimetry, MEV, XRD and N-2 adsorption-desorption isotherms. The results show that the narrower pore size distribution of alumina substrate allowed to prepare membranes more homogeneous and free of cracks than that supported on kaolin. The crystallite and pore sizes of the membranes could be controlled by adjusting the temperature of sintering, allowing materials with adequate microstructure with application for ultrafiltration process.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The laser ablation method was used for depositing porous nanocrystalline indium-tin oxide thin films for gas sensing applications. Samples were prepared at different pressures using three gases (O-2, 0.8N(2):0.2O(2), N-2) and heat-treated in the same atmosphere used for the ablation process. X-ray diffraction results show that the films are not oriented and the grain sizes are in the range between 15 and 40 nm. The grains are round shaped for all samples and the porosity of the films increases with the deposition pressure. The degree of sintering after heat treatment increases for lower oxygen concentrations, generating fractures on the surface of the samples. Film thicknesses are in the range of I pm for all gases as determined from scanning electron microscopy cross-sections. Electrical resistance varies between 36.3 ohm for the film made at 10 Pa pressure in N-2 until 9.35 x 10(7) ohm for the film made at 100 Pa in O-2. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Transmission and scanning electron microscopy techniques were used to study the heterogeneities found in the microstructure of (SnO2Co3O4Nb2O5Fe2O3)-Co-.-Nb-.-Fe-. and (SnO2ZnONb2O5FC2O3)-Zn-.-Nb-.-F-. varistors. Second phases encountered both inside the grains and ingrain boundary regions were identified using energy dispersive spectrometry and electron diffraction patterns. Through the electrical characterisation, the presence of iron oxide among the additives was determined to highlight the non-linear properties of the specimens. A discussion on the influence of second phases on the non-linear features of these systems is also addressed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Aware of the difficulties in applying sol-gel technology on the preparation of thin films suitable for optical devices, the present paper reports on the preparation of crack-free erbium- and ytterbium-doped silica: hafnia thick films onto silica on silicon. The film was obtained using a dispersion of silica-hafnia nanoparticles into a binder solution, spin-coating, regular thermal process and rapid thermal process. The used methodology has allowed a significant increase of the film thickness. Based on the presented results good optical-quality films with the required thickness for a fiber matching single mode waveguide were obtained using the erbium- and ytterbium-activated sol-gel silica:hafnia system. The prepared film supports two transversal electric modes at 1550 nm and the difference between the transversal electric mode and the transversal magnetic mode is very small, indicating low birefringence. Photoluminescence of the I-4(13/2) -> I-4(15/2) transition of erbium ions shows a broad band centered at 1.53 mu m with full width at a half maximum of 28 nm. Up-conversion emission was carried out under different pump laser powers, and just one transition at red region was observed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Lead-Cadmium fluorosilicate stable glasses were prepared and the vitreous domain region determined in the composition diagram. Characteristic temperatures were obtained from thermal analysis and the structural studies performed illustrate clearly the role played by lead atoms in the glasses crystallization behavior and the glass-forming ability of cadmium atoms. The occurrence of either a cubic lead fluoride or a lead-cadmium fluoride solid solution in crystallizing samples was found to be dependent on Er3+ doping. The optically active ions were found to concentrate in the crystalline phase and in fact play the role of nucleating agent as suggested from X-ray diffraction and EXAFS measurements. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
In this work, Eu(III) and Eu(II) doped gadolinium silicates has been obtained as compact tubes starting from spherical gadolinium hydroxide carbonate using the pores of silica matrix as support and its surface as reagent. Eu(III) doped gadolinium silicate with hexagonal phase shows an interesting visible shifted charge transfer band when compared to disilicate with orthorhombic phase that was also obtained. Eu(II) gadolinium silicate has been prepared using CO atmosphere presenting an intense blue emission. The divalent europium system shows a potential application as an UV-blue converter. The samples were characterized by scanning electron microscopy (SEM), X-ray powder diffractometry (XRD) and photoluminescence spectroscopy. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
We report the successful deposition of CaBi2Nb2O9 (CBN) thin films on platinum coated silicon substrates by polymeric precursor method. The CBN thin films exhibited good structural, dielectric and CBN/Pt interface characteristics. The leakage current of the capacitor structure was around 0.15 A cm(-2) at an applied electric field of 30 kV cm(-1). The capacitance-voltage measurements indicated good ferroelectric polarization switching characteristics. The typical measured small signal dielectric constant and the dissipation factor at a frequency of 100 kHz were 90 and 0.053, respectively. The remanent polarization and the drive voltage values were 4.2 C cm(-2) and 1.7 V at an applied voltage of 10 V. No significant fatigue was observed at least up to 10(8) switching cycles. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This work reports on the preparation of erbium and ytterbium co-doped SiO2:HfO2 single mode planar waveguides using the sol-gel method. Silica nanoparticles were prepared from tetraethylorthosilicate in basic media and the films were characterized by transmission electron microscopy, scanning electron microscopy, mechanical profilometry, M-lines spectroscopy based on prism coupling technique, X-ray diffractometry, infrared spectroscopy and photoluminescence spectroscopy. The film thicknesses and the refractive indexes were adjusted in order to satisfy a future efficient coupling to single mode optical fiber. Films suitable for both weak and strong light confinement were prepared varying hafnia concentration into the silica matrix. The lifetime values of erbium I-4(13/2) state were measured in order to investigate the influence of clustering and hydroxyl groups on the fluorescence quantum efficiency of the I-4(13/2) level, responsible for the emission at 1.55 mu m attributed to the I-4(13/2) -> I-4(15/2) transition. The high lifetime values suggest the absence of erbium clusters and the elimination of hydroxyl groups by rapid thermal process. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A photocatalyst based on CuO/SiO2 was prepared, and evaluated for the degradation of methylene blue in aqueous medium. The photocatalyst was obtained by calcination method of copper salt, in the presence of silica. The characterization by XRD, FTIR, and TPR techniques confirmed the formation of CuO as active phase. SEM studies showed CuO deposited on the surface of SiO2. By ESI-MS, it was demonstrated that the degradation of methylene blue occurs through successive hydroxylations. Photodegradation assays showed that CuO/SiO2 was efficient for degradation, and that the material worked better in the presence of UV light.