272 resultados para Ornament


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shipping list no.: 96-0088-P.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Includes bibliographical references (p. 490-505) and indexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Title within ornamental borders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In portfolio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

No. 229 repeated in numbering; no. 230 omitted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advertisements printed on endpapers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Editor: V.I. Olovi︠a︡nishnikov.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The author died while several chapters of v. 6 were obviously unfinished, but no attempt was made to complete the subject-matter. The work was to have been concluded with a 7th volume discussing the illuminated manuscripts of the period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An historical review of the literature relating to placoderm scales preserved in association with articulated dermal plates, or as isolated units in microvertebrate assemblages, is followed by a discussion of their relevance in phylogenetic analyses of the Placodermi. The dentinous tissue forming the tubercles of Early Devonian acanthothoracid scales and dermal bone is similar to that of the dermal bone ornament of some osteostracans, and denticles of the vertebrate Skiichthys from the Ordovician Harding Sandstone. This similarity supports the proposition that the gnathostomes are the sister-group of the Osteostraci, with the Placodermi branching earliest within the gnathostomes, and the Acanthothoraci branching earliest within the Placodermi. The meso-semidentine in acanthothoracid tubercles, rather than semidentine (sensu stricto), is most likely to be synapomorphic for the Placodermi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of high efficacy, long lifespan, and environment-friendly operation, LED lighting devices become more and more popular in every part of our life, such as ornament/interior lighting, outdoor lightings and flood lighting. The LED driver is the most critical part of the LED lighting fixture. It heavily affects the purchasing cost, operation cost as well as the light quality. Design a high efficiency, low component cost and flicker-free LED driver is the goal. The conventional single-stage LED driver can achieve low cost and high efficiency. However, it inevitably produces significant twice-line-frequency lighting flicker, which adversely affects our health. The conventional two-stage LED driver can achieve flicker-free LED driving at the expenses of significantly adding component cost, design complexity and low the efficiency. The basic ripple cancellation LED driving method has been proposed in chapter three. It achieves a high efficiency and a low component cost as the single-stage LED driver while also obtaining flicker-free LED driving performance. The basic ripple cancellation LED driver is the foundation of the entire thesis. As the research evolving, another two ripple cancellation LED drivers has been developed to improve different aspects of the basic ripple cancellation LED driver design. The primary side controlled ripple cancellation LED driver has been proposed in chapter four to further reduce cost on the control circuit. It eliminates secondary side compensation circuit and an opto-coupler in design while at the same time maintaining flicker-free LED driving. A potential integrated primary side controller can be designed based on the proposed LED driving method. The energy channeling ripple cancellation LED driver has been proposed in chapter five to further reduce cost on the power stage circuit. In previous two ripple cancellation LED drivers, an additional DC-DC converter is needed to achieve ripple cancellation. A power transistor has been used in the energy channeling ripple cancellation LED driving design to successfully replace a separate DC-DC converter and therefore achieved lower cost. The detailed analysis supports the theory of the proposed ripple cancellation LED drivers. Simulation and experiment have also been included to verify the proposed ripple cancellation LED drivers.