868 resultados para Nonlinear constrained optimization problems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of the Design by Analysis (DBA) route is a modern trend in pressure vessel and piping international codes in mechanical engineering. However, to apply the DBA to structures under variable mechanical and thermal loads, it is necessary to assure that the plastic collapse modes, alternate plasticity and incremental collapse (with instantaneous plastic collapse as a particular case), be precluded. The tool available to achieve this target is the shakedown theory. Unfortunately, the practical numerical applications of the shakedown theory result in very large nonlinear optimization problems with nonlinear constraints. Precise, robust and efficient algorithms and finite elements to solve this problem in finite dimension has been a more recent achievements. However, to solve real problems in an industrial level, it is necessary also to consider more realistic material properties as well as to accomplish 3D analysis. Limited kinematic hardening, is a typical property of the usual steels and it should be considered in realistic applications. In this paper, a new finite element with internal thermodynamical variables to model kinematic hardening materials is developed and tested. This element is a mixed ten nodes tetrahedron and through an appropriate change of variables is possible to embed it in a shakedown analysis software developed by Zouain and co-workers for elastic ideally-plastic materials, and then use it to perform 3D shakedown analysis in cases with limited kinematic hardening materials

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of the Design by Analysis concept is a trend in modern pressure vessel and piping calculations. DBA flexibility allow us to deal with unexpected configurations detected at in-service inspections. It is also important, in life extension calculations, when deviations of the original standard hypotesis adopted initially in Design by Formula, can happen. To apply the DBA to structures under variable mechanic and thermal loads, it is necessary that, alternate plasticity and incremental collapse (with instantaneous plastic collapse as a particular case), be precluded. These are two basic failure modes considered by ASME or European Standards in DBA. The shakedown theory is the tool available to achieve this goal. In order to apply it, is necessary only the range of the variable loads and the material properties. Precise, robust and efficient algorithms to solve the very large nonlinear optimization problems generated in numerical applications of the shakedown theory is a recent achievement. Zouain and co-workers developed one of these algorithms for elastic ideally-plastic materials. But, it is necessary to consider more realistic material properties in real practical applications. This paper shows an enhancement of this algorithm to dealing with limited kinematic hardening, a typical property of the usual steels. This is done using internal thermodynamic variables. A discrete algorithm is obtained using a plane stress, mixed finite element, with internal variable. An example, a beam encased in an end, under constant axial force and variable moment is presented to show the importance of considering the limited kinematic hardening in a shakedown analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In design or safety assessment of mechanical structures, the use of the Design by Analysis (DBA) route is a modern trend. However, for making possible to apply DBA to structures under variable loads, two basic failure modes considered by ASME or European Standards must be precluded. Those modes are the alternate plasticity and incremental collapse (with instantaneous plastic collapse as a particular case). Shakedown theory is a tool that permit us to assure that those kinds of failures will be avoided. However, in practical applications, very large nonlinear optimization problems are generated. Due to this facts, only in recent years have been possible to obtain algorithms sufficiently accurate, robust and efficient, for dealing with this class of problems. In this paper, one of these shakedown algorithms, developed for dealing with elastic ideally-plastic structures, is enhanced to include limited kinematic hardening, a more realistic material behavior. This is done in the continuous model by using internal thermodynamic variables. A corresponding discrete model is obtained using an axisymmetric mixed finite element with an internal variable. A thick wall sphere, under variable thermal and pressure loads, is used in an example to show the importance of considering the limited kinematic hardening in the shakedown calculations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report describes a tool for global optimization that implements the Differential Evolution optimization algorithm as a new Excel add-in. The tool takes a step beyond Excel’s Solver add-in, because Solver often returns a local minimum, that is, a minimum that is less than or equal to nearby points, while Differential Evolution solves for the global minimum, which includes all feasible points. Despite complex underlying mathematics, the tool is relatively easy to use, and can be applied to practical optimization problems, such as establishing pricing and awards in a hotel loyalty program. The report demonstrates an example of how to develop an optimum approach to that problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a mechanical problem concerning a 2D axisymmetric body moving forward on the plane and making slow turns of fixed magnitude about its axis of symmetry. The body moves through a medium of non-interacting particles at rest, and collisions of particles with the body's boundary are perfectly elastic (billiard-like). The body has a blunt nose: a line segment orthogonal to the symmetry axis. It is required to make small cavities with special shape on the nose so as to minimize its aerodynamic resistance. This problem of optimizing the shape of the cavities amounts to a special case of the optimal mass transfer problem on the circle with the transportation cost being the squared Euclidean distance. We find the exact solution for this problem when the amplitude of rotation is smaller than a fixed critical value, and give a numerical solution otherwise. As a by-product, we get explicit description of the solution for a class of optimal transfer problems on the circle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolutionary algorithms alone cannot solve optimization problems very efficiently since there are many random (not very rational) decisions in these algorithms. Combination of evolutionary algorithms and other techniques have been proven to be an efficient optimization methodology. In this talk, I will explain the basic ideas of our three algorithms along this line (1): Orthogonal genetic algorithm which treats crossover/mutation as an experimental design problem, (2) Multiobjective evolutionary algorithm based on decomposition (MOEA/D) which uses decomposition techniques from traditional mathematical programming in multiobjective optimization evolutionary algorithm, and (3) Regular model based multiobjective estimation of distribution algorithms (RM-MEDA) which uses the regular property and machine learning methods for improving multiobjective evolutionary algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless power transfer (WPT) and radio frequency (RF)-based energy har- vesting arouses a new wireless network paradigm termed as wireless powered com- munication network (WPCN), where some energy-constrained nodes are enabled to harvest energy from the RF signals transferred by other energy-sufficient nodes to support the communication operations in the network, which brings a promising approach for future energy-constrained wireless network design. In this paper, we focus on the optimal WPCN design. We consider a net- work composed of two communication groups, where the first group has sufficient power supply but no available bandwidth, and the second group has licensed band- width but very limited power to perform required information transmission. For such a system, we introduce the power and bandwidth cooperation between the two groups so that both group can accomplish their expected information delivering tasks. Multiple antennas are employed at the hybrid access point (H-AP) to en- hance both energy and information transfer efficiency and the cooperative relaying is employed to help the power-limited group to enhance its information transmission throughput. Compared with existing works, cooperative relaying, time assignment, power allocation, and energy beamforming are jointly designed in a single system. Firstly, we propose a cooperative transmission protocol for the considered system, where group 1 transmits some power to group 2 to help group 2 with information transmission and then group 2 gives some bandwidth to group 1 in return. Sec- ondly, to explore the information transmission performance limit of the system, we formulate two optimization problems to maximize the system weighted sum rate by jointly optimizing the time assignment, power allocation, and energy beamforming under two different power constraints, i.e., the fixed power constraint and the aver- age power constraint, respectively. In order to make the cooperation between the two groups meaningful and guarantee the quality of service (QoS) requirements of both groups, the minimal required data rates of the two groups are considered as constraints for the optimal system design. As both problems are non-convex and have no known solutions, we solve it by using proper variable substitutions and the semi-definite relaxation (SDR). We theoretically prove that our proposed solution method can guarantee to find the global optimal solution. Thirdly, consider that the WPCN has promising application potentials in future energy-constrained net- works, e.g., wireless sensor network (WSN), wireless body area network (WBAN) and Internet of Things (IoT), where the power consumption is very critical. We investigate the minimal power consumption optimal design for the considered co- operation WPCN. For this, we formulate an optimization problem to minimize the total consumed power by jointly optimizing the time assignment, power allocation, and energy beamforming under required data rate constraints. As the problem is also non-convex and has no known solutions, we solve it by using some variable substitutions and the SDR method. We also theoretically prove that our proposed solution method for the minimal power consumption design guarantees the global optimal solution. Extensive experimental results are provided to discuss the system performance behaviors, which provide some useful insights for future WPCN design. It shows that the average power constrained system achieves higher weighted sum rate than the fixed power constrained system. Besides, it also shows that in such a WPCN, relay should be placed closer to the multi-antenna H-AP to achieve higher weighted sum rate and consume lower total power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Technologies for Big Data and Data Science are receiving increasing research interest nowadays. This paper introduces the prototyping architecture of a tool aimed to solve Big Data Optimization problems. Our tool combines the jMetal framework for multi-objective optimization with Apache Spark, a technology that is gaining momentum. In particular, we make use of the streaming facilities of Spark to feed an optimization problem with data from different sources. We demonstrate the use of our tool by solving a dynamic bi-objective instance of the Traveling Salesman Problem (TSP) based on near real-time traffic data from New York City, which is updated several times per minute. Our experiment shows that both jMetal and Spark can be integrated providing a software platform to deal with dynamic multi-optimization problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many important problems in communication networks, transportation networks, and logistics networks are solved by the minimization of cost functions. In general, these can be complex optimization problems involving many variables. However, physicists noted that in a network, a node variable (such as the amount of resources of the nodes) is connected to a set of link variables (such as the flow connecting the node), and similarly each link variable is connected to a number of (usually two) node variables. This enables one to break the problem into local components, often arriving at distributive algorithms to solve the problems. Compared with centralized algorithms, distributed algorithms have the advantages of lower computational complexity, and lower communication overhead. Since they have a faster response to local changes of the environment, they are especially useful for networks with evolving conditions. This review will cover message-passing algorithms in applications such as resource allocation, transportation networks, facility location, traffic routing, and stability of power grids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the filed of semantic grid, QoS-based Web service scheduling for workflow optimization is an important problem.However, in semantic and service rich environment like semantic grid, the emergence of context constraints on Web services is very common making the scheduling consider not only quality properties of Web services, but also inter service dependencies which are formed due to the context constraints imposed on Web services. In this paper, we present a repair genetic algorithm, namely minimal-conflict hill-climbing repair genetic algorithm, to address scheduling optimization problems in workflow applications in the presence of domain constraints and inter service dependencies. Experimental results demonstrate the scalability and effectiveness of the genetic algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The elastic task model, a significant development in scheduling of real-time control tasks, provides a mechanism for flexible workload management in uncertain environments. It tells how to adjust the control periods to fulfill the workload constraints. However, it is not directly linked to the quality-of-control (QoC) management, the ultimate goal of a control system. As a result, it does not tell how to make the best use of the system resources to maximize the QoC improvement. To fill in this gap, a new feedback scheduling framework, which we refer to as QoC elastic scheduling, is developed in this paper for real-time process control systems. It addresses the QoC directly through embedding both the QoC management and workload adaptation into a constrained optimization problem. The resulting solution for period adjustment is in a closed-form expressed in QoC measurements, enabling closed-loop feedback of the QoC to the task scheduler. Whenever the QoC elastic scheduler is activated, it improves the QoC the most while still meeting the system constraints. Examples are given to demonstrate the effectiveness of the QoC elastic scheduling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a robust filtering problem for uncertain discrete-time, homogeneous, first-order, finite-state hidden Markov models (HMMs). The class of uncertain HMMs considered is described by a conditional relative entropy constraint on measures perturbed from a nominal regular conditional probability distribution given the previous posterior state distribution and the latest measurement. Under this class of perturbations, a robust infinite horizon filtering problem is first formulated as a constrained optimization problem before being transformed via variational results into an unconstrained optimization problem; the latter can be elegantly solved using a risk-sensitive information-state based filtering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Premature convergence to local optimal solutions is one of the main difficulties when using evolutionary algorithms in real-world optimization problems. To prevent premature convergence and degeneration phenomenon, this paper proposes a new optimization computation approach, human-simulated immune evolutionary algorithm (HSIEA). Considering that the premature convergence problem is due to the lack of diversity in the population, the HSIEA employs the clonal selection principle of artificial immune system theory to preserve the diversity of solutions for the search process. Mathematical descriptions and procedures of the HSIEA are given, and four new evolutionary operators are formulated which are clone, variation, recombination, and selection. Two benchmark optimization functions are investigated to demonstrate the effectiveness of the proposed HSIEA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stereo visual odometry has received little investigation in high altitude applications due to the generally poor performance of rigid stereo rigs at extremely small baseline-to-depth ratios. Without additional sensing, metric scale is considered lost and odometry is seen as effective only for monocular perspectives. This paper presents a novel modification to stereo based visual odometry that allows accurate, metric pose estimation from high altitudes, even in the presence of poor calibration and without additional sensor inputs. By relaxing the (typically fixed) stereo transform during bundle adjustment and reducing the dependence on the fixed geometry for triangulation, metrically scaled visual odometry can be obtained in situations where high altitude and structural deformation from vibration would cause traditional algorithms to fail. This is achieved through the use of a novel constrained bundle adjustment routine and accurately scaled pose initializer. We present visual odometry results demonstrating the technique on a short-baseline stereo pair inside a fixed-wing UAV flying at significant height (~30-100m).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolutionary computation is an effective tool for solving optimization problems. However, its significant computational demand has limited its real-time and on-line applications, especially in embedded systems with limited computing resources, e.g., mobile robots. Heuristic methods such as the genetic algorithm (GA) based approaches have been investigated for robot path planning in dynamic environments. However, research on the simulated annealing (SA) algorithm, another popular evolutionary computation algorithm, for dynamic path planning is still limited mainly due to its high computational demand. An enhanced SA approach, which integrates two additional mathematical operators and initial path selection heuristics into the standard SA, is developed in this work for robot path planning in dynamic environments with both static and dynamic obstacles. It improves the computing performance of the standard SA significantly while giving an optimal or near-optimal robot path solution, making its real-time and on-line applications possible. Using the classic and deterministic Dijkstra algorithm as a benchmark, comprehensive case studies are carried out to demonstrate the performance of the enhanced SA and other SA algorithms in various dynamic path planning scenarios.