927 resultados para Multicopper Oxidase
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
The preserved activity of immobilized biomolecules in layer-by-layer (LbL) films can be exploited in various applications. including biosensing. In this study, cholesterol oxidase (COX) layers were alternated with layers of poly(allylamine hydrochloride) (PAH) in LbL films whose morphology was investigated with atomic force microscopy (AFM). The adsorption kinetics of COX layers comprised two regimes, a fast, first-order kinetics process followed by a slow process fitted with a Johnson-Mehl-Avrami (JMA) function. with exponent similar to 2 characteristic of aggregates growing as disks. The concept based on the use of sensor arrays to increase sensitivity, widely employed in electronic tongues, was extended to biosensing with impedance spectroscopy measurements. Using three sensing units, made of LbL films of PAH/COX and PAHIPVS (polyvinyl sulfonic acid) and a bare gold interdigitated electrode, we were able to detect cholesterol in aqueous solutions down to the 10(-6) M level. This high sensitivity is attributed to the molecular-recognition interaction between COX and cholesterol, and opens the way for clinical tests to be made with low cost. fast experimental procedures. (C) 2008 Published by Elsevier B.V.
Resumo:
Angiotensin II (All), the active component of the renin angiotensin system (RAS), plays a vital role in the regulation of physiological processes of the cardiovascular system, but also has autocrine and paracrine actions in various tissues and organs. Many studies have shown the existence of RAS in the pancreas of humans and rodents. The aim of this study was to evaluate potential signaling pathways mediated by All in isolated pancreatic islets of rats. Phosphorylation of MAPKs (ERK1/2, JNK and p38MAPK), and the interaction between proteins JAK/STAT were evaluated. All increased JAK2/STAT1 (42%) and JAK2/STAT3 (100%) interaction without altering the total content of JAK2. Analyzing the activation of MAPKs (ERK1/2, JNK and p38MAPK) in isolated pancreatic islets from rats we observed that All rapidly (3 min) promoted a significant increase in the phosphorylation degree of these proteins after incubation with the hormone. Curiously JNK protein phosphorylation was inhibited by DPI, suggesting the involvement of NAD(P)H oxidase in the activation of protein. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Aims: NADPH oxidase (NOX) is a known source of superoxide anions in phagocytic and non-phagocytic cells. In this study, the presence of this enzyme in human pancreatic islets and the importance of NADPH oxidase in human beta-cell function were investigated. Main methods and key findings: In isolated human pancreatic islets, the expression of NADPH oxidase components was evidenced by real-time PCR (p22(PHOX), p47(PHOX) and p67(PHOX)), Western blotting (p47(PHOX) and p67(PHOX)) and immunohistochemistry (p47(PHOX), p67(PHOX) and gp91(PHOX)). Immunohistochemistry experiments showed co-localization of p47(PHOX), p67(PHOX) and gp91(PHOX) (isoform 2 of NADPH oxidase-NOX2) with insulin secreting cells. Inhibition of NADPH oxidase activity impaired glucose metabolism and glucose-stimulated insulin secretion. Significance: These findings demonstrate the presence of the main intrinsic components of NADPH oxidase comprising the NOX2 isoform in human pancreatic islets, whose activity also contributes to human beta-cell function. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Cytochemical localization of hydrogen peroxide-generating sites suggests NADPH (nicotinamide adenine dinucleotide 3-phosphate [ reduced form]) oxidase expression at the maternal-fetal interface. To explore this possibility, we have characterized the expression and activity of the NADPH oxidase complex in trophoblast cells during the postimplantation period. Implantation sites and ectoplacental cones (EPCs) from 7.5-gestational day embryos from CD1 mice were used as a source for expression analyses of NADPH oxidase catalytic and regulatory subunits. EPCs grown in primary culture were used to investigate the production of superoxide anion through dihydroxyethidium oxidation in confocal microscopy and immunohistochemical assays. NADPH subunits Cybb (gp91phox), Cyba (p22phox), Ncf4 (p40phox), Ncf1 (p47phox), Ncf2 (p67phox), and Rac1 were expressed by trophoblast cells. The fundamental subunits of membrane CYBB and cytosolic NCF2 were markedly upregulated after phorbol-12-myristate-13-acetate (PMA) treatment, as detected by quantitative real-time PCR, Western blotting, and immunohistochemistry. Fluorescence microscopy imaging showed colocalization of cytosolic and plasma membrane NADPH oxidase subunits mainly after PMA treatment, suggesting assembly of the complex after enzyme activation. Cultured EPCs produced superoxide in a NADPH-dependent manner, associating the NADPH oxidase-mediated superoxide production with postimplantation trophoblast physiology. NADPH-oxidase cDNA subunit sequencing showed a high degree of homology between the trophoblast and neutrophil isoforms of the oxidase, emphasizing a putative role for reactive oxygen species production in phagocytic activity and innate immune responses.
Resumo:
The aim of this study was the isolation of the LAAO from Lachesis muta venom (LmLAAO) and its biochemical, functional and structural characterization. Two different purification protocols were developed and both provided highly homogeneous and active LmLAAO. It is a homodimeric enzyme with molar mass around 120 kDa under non-reducing conditions, 60 kDa under reducing conditions in SDS-PAGE and 60852 Da by mass spectrometry. Forty amino acid residues were directly sequenced from LmLAAO and its complete cDNA was identified and characterized from an Expressed Sequence Tags data bank obtained from a venom gland. A model based on sequence homology was manually built in order to predict its three-dimensional structure. LmLAAO showed a catalytic preference for hydrophobic amino acids (K-m of 0.97 mmol/L with Leu). A mild myonecrosis was observed histologically in mice after injection of 100 mu g of LmLAAO and confirmed by a 15-fold increase in CK activity. LmLAAO induced cytotoxicity on AGS cell line (gastric adenocarcinoma, IC50: 22.7 mu g/mL) and on MCF-7 cell line (breast adenocarcinoma, IC50:1.41 mu g/mL). It presents antiparasitic activity on Leishmania brasiliensis (IC50: 2.22 mu g/nnL), but Trypanosoma cruzi was resistant to LmLAAO. In conclusion, LmLAAO showed low systemic toxicity but important in vitro pharmacological actions. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The association between major depressive disorder (MDD) and cardiovascular disease (CVD) is among the best described medical comorbidities. The presence of MDD increases the risk of cardiac admissions and mortality and increases healthcare costs in patients with CVD, and similarly, CVD affects the course and outcome of MDD. The potential shared biological mechanisms involved in these comorbid conditions are not well known. However, the enzyme monoamine oxidase-A (MAO-A), which has a key role in the degradation of catecholamines, has been associated with the pathophysiology and therapeutics of both MDD and CVD. Increased MAO-A activity results in the dysregulation of downstream targets of this enzyme and thus affects the pathophysiology of the two diseases. These deleterious effects include altered noradrenaline turnover, with a direct elevation in oxidative stress parameters, as well as increased platelet activity and cytokine levels. These effects were shown to be reversed by MAO inhibitors. Here, a model describing a key role for the MAO-A in comorbid MDD and CVD is proposed, with focus on the shared pathophysiological mechanisms and the potential therapeutic relevance of agents targeting this enzyme.
Resumo:
Vascular Smooth Muscle Cell (VSMC) migration into vessel neointima is a therapeutic target for atherosclerosis and postinjury restenosis. Nox1 NADPH oxidase-derived oxidants synergize with growth factors to support VSMC migration. We previously described the interaction between NADPH oxidases and the endoplasmic reticulum redox chaperone protein disulfide isomerase (PDI) in many cell types. However, physiological implications, as well as mechanisms of such association, are yet unclear. We show here that platelet-derived growth factor (PDGF) promoted subcellular redistribution of PDI concomitant to Nox1-dependent reactive oxygen species production and that siRNA-mediated PDI silencing inhibited such reactive oxygen species production, while nearly totally suppressing the increase in Nox1 expression, with no change in Nox4. Furthermore, PDI silencing inhibited PDGF-induced VSMC migration assessed by distinct methods, whereas PDI overexpression increased spontaneous basal VSMC migration. To address possible mechanisms of PDI effects, we searched for PDI interactome by systems biology analysis of physical protein-protein interaction networks, which indicated convergence with small GTPases and their regulator RhoGDI. PDI silencing decreased PDGF-induced Rac1 and RhoA activities, without changing their expression. PDI co-immunoprecipitated with RhoGDI at base line, whereas such association was decreased after PDGF. Also, PDI co-immunoprecipitated with Rac1 and RhoA in a PDGF-independent way and displayed detectable spots of perinuclear co-localization with Rac1 and RhoGDI. Moreover, PDI silencing promoted strong cytoskeletal changes: disorganization of stress fibers, decreased number of focal adhesions, and reduced number of RhoGDI-containing vesicular recycling adhesion structures. Overall, these data suggest that PDI is required to support Nox1/redox and GTPase-dependent VSMC migration.
Resumo:
NADPH oxidase (Nox) is a unique, multi-protein, electron transport system that produces large amounts of superoxide via the reduction of molecular oxygen. Nox-derived reactive oxygen species (ROS) are known to be involved in a variety of physiological processes, including host defense and signal transduction. However, over the past decade, the involvement of (Nox)-dependent oxidative stress in the pathophysiology of several neurodegenerative diseases has been increasingly recognized. ROS produced by Nox proteins contribute to neurodegenerative diseases through distinct mechanisms, such as oxidation of DNA, proteins, lipids, amino acids and metals, in addition to activation of redox-sensitive signaling pathways. In this review, we discuss the recent literature on Nox involvement in neurodegeneration, focusing on Parkinson and Alzheimer diseases.
Resumo:
Background/Aims: beta(2)-adrenoceptor (beta(2)-AR) activation induces smooth muscle relaxation and endothelium-derived nitric oxide (NO) release. However, whether endogenous basal beta(2)-AR activity controls vascular redox status and NO bioavailability is unclear. Thus, we aimed to evaluate vascular reactivity in mice lacking functional beta(2)-AR (beta 2KO), focusing on the role of NO and superoxide anion. Methods and Results: Isolated thoracic aortas from beta 2KO and wild-type mice (WT) were studied. beta 2KO aortas exhibited an enhanced contractile response to phenylephrine compared to WT. Endothelial removal and L-NAME incubation increased phenylephrine-induced contraction, abolishing the differences between beta 2KO and WT mice. Basal NO availability was reduced in aortas from beta 2KO mice. Incubation of beta 2KO aortas with superoxide dismutase or NADPH inhibitor apocynin restored the enhanced contractile response to phenylephrine to WT levels. beta 2KO aortas exhibited oxidative stress detected by enhanced dihydroethidium fluorescence, which was normalized by apocynin. Protein expression of eNOS was reduced, while p47(phox) expression was enhanced in beta 2KO aortas. Conclusions: The present results demonstrate for the first time that enhanced NADPH-derived superoxide anion production is associated with reduced NO bioavailability in aortas of beta 2KO mice. This study extends the knowledge of the relevance of the endogenous activity of beta(2)-AR to the maintenance of the vascular physiology. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
(NO)-N-center dot is considered to be a key macrophage-derived cytotoxic effector during Trypanosoma cruzi infection. On the other hand, the microbicidal properties of reactive oxygen species (ROS) are well recognized, but little importance has been attributed to them during in vivo infection with T. cruzi. In order to investigate the role of ROS in T. cruzi infection, mice deficient in NADPH phagocyte oxidase (gp91(phox-/-) or phox KO) were infected with Y strain of T. cruzi and the course of infection was followed. phox KO mice had similar parasitemia, similar tissue parasitism and similar levels of IFN-gamma and TNF in serum and spleen cell culture supernatants, when compared to wild-type controls. However, all phox KO mice succumbed to infection between day 15 and 21 after inoculation with the parasite, while 60% of wild-type mice were alive 50 days after infection. Further investigation demonstrated increased serum levels of nitrite and nitrate (NOx) at day 15 of infection in phox KO animals, associated with a drop in blood pressure. Treatment with a NOS2 inhibitor corrected the blood pressure, implicating NOS2 in this phenomenon. We postulate that superoxide reacts with (NO)-N-center dot in vivo, preventing blood pressure drops in wild type mice. Hence, whilst superoxide from phagocytes did not play a critical role in parasite control in the phox KO animals, its production would have an important protective effect against blood pressure decline during infection with T. cruzi.
Resumo:
Testosterone has been implicated in vascular remodeling associated with hypertension. Molecular mechanisms underlying this are elusive, but oxidative stress may be important. We hypothesized that testosterone stimulates generation of reactive oxygen species (ROS) and migration of vascular smooth muscle cells (VSMCs), with enhanced effects in cells from spontaneously hypertensive rats (SHRs). The mechanisms (genomic and nongenomic) whereby testosterone induces ROS generation and the role of c-Src, a regulator of redox-sensitive migration, were determined. VSMCs from male Wistar-Kyoto rats and SHRs were stimulated with testosterone (10(-7) mol/L, 0-120 minutes). Testosterone increased ROS generation, assessed by dihydroethidium fluorescence and lucigenin-enhanced chemiluminescence (30 minutes [SHR] and 60 minutes [both strains]). Flutamide (androgen receptor antagonist) and actinomycin D (gene transcription inhibitor) diminished ROS production (60 minutes). Testosterone increased Nox1 and Nox4 mRNA levels and p47phox protein expression, determined by real-time PCR and immunoblotting, respectively. Flutamide, actinomycin D, and cycloheximide (protein synthesis inhibitor) diminished testosterone effects on p47phox. c-Src phosphorylation was observed at 30 minutes (SHR) and 120 minutes (Wistar-Kyoto rat). Testosterone-induced ROS generation was repressed by 3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-day]pyrimidin-4-amine (c-Src inhibitor) in SHRs and reduced by apocynin (antioxidant/NADPH oxidase inhibitor) in both strains. Testosterone stimulated VSMCs migration, assessed by the wound healing technique, with greater effects in SHRs. Flutamide, apocynin, and 3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-day] pyrimidin-4-amine blocked testosterone-induced VSMCs migration in both strains. Our study demonstrates that testosterone induces VSMCs migration via NADPH oxidase-derived ROS and c-Src-dependent pathways by genomic and nongenomic mechanisms, which are differentially regulated in VSMCs from Wistar-Kyoto rats and SHRs. (Hypertension. 2012; 59: 1263-1271.). Online Data Supplement
Resumo:
We investigated the effect of increased glucose oxidase concentration as a technological option to decrease oxidative stress during the processing of probiotic yogurts. Probiotic yogurts were produced with increased concentrations of glucose oxidase (0, 250, 500, 750, or 1,000 mg/kg) and submitted to physicochemical and microbiological analysis at 1, 15, and 30 d of refrigerated storage. Higher concentrations of glucose oxidase (750 and 1,000 mg/kg) and a longer storage time were found to have an influence on the characteristics of the probiotic yogurt, contributing to more extensive post-acidification, an increase in the dissolved oxygen level, and higher proteolysis. In addition, increased production of aroma compounds (diacetyl and acetaldehyde) and organic acids (mainly lactic acid) and a decrease in the probiotic bacteria count were reported. The use of glucose oxidase was a feasible option to minimize oxidative stress in probiotic yogurts. However, supplementation with excessive amounts of the enzyme may be ineffective, because insufficient substrate (glucose) is present for its action. Consumer tests should be performed to evaluate changes in the sensory attributes of the probiotic yogurts with increased supplementation of glucose oxidase. In addition, packaging systems with different permeability to oxygen should be evaluated.
Resumo:
We explored the impact of Nox-2 in modulating inflammatory-mediated microglial responses in the 6-hydroxydopamine (6-OHDA)-induced Parkinson’s disease (PD) model. Nox1 and Nox2 gene expression were found to increase in striatum, whereas a marked increase of Nox2 expression was observed in substantia nigra (SN) of wild-type (wt) mice after PD induction. Gp91phox-/- 6-OHDA-lesioned mice exhibited a significant reduction in the apomorphine-induced rotational behavior, when compared to wt mice. Immunolabeling assays indicated that striatal 6-OHDA injections reduced the number of dopaminergic (DA) neurons in the SN of wt mice. In gp91phox-/- 6-OHDA-lesioned mice the DA degeneration was negligible, suggesting an involvement of Nox in 6-OHDA-mediated SN degeneration. Gp91phox-/- 6-OHDA-lesioned mice treated with minocycline, a tetracycline derivative that exerts multiple anti-inflammatory effects, including microglial inhibition, exhibited increased apomorphine-induced rotational behavior and degeneration of DA neurons after 6-OHDA injections. The same treatment also increased TNF-α release and potentiated NF-κB activation in the SN of gp91phox-/--lesioned mice. Our results demonstrate for the first time that inhibition of microglial cells increases the susceptibility of gp91phox-/- 6-OHDA lesioned mice to develop PD. Blockade of microglia leads to NF-κB activation and TNF-α release into the SN of gp91phox-/- 6-OHDA lesioned mice, a likely mechanism whereby gp91phox-/- 6-OHDA lesioned mice may be more susceptible to develop PD after microglial cell inhibition. Nox2 adds an essential level of regulation to signaling pathways underlying the inflammatory response after PD induction
Resumo:
Forschung über Membranenproteine stellt strenge Hindernisse, seit ruhigem gerade wenige Beispiele der Membranenproteinsorten sind gekennzeichnet worden in den verwendbaren experimentellen Plattformen gegenüber. Die Hauptherausforderung ist, ihre ausgezeichnete entworfene strukturelle Vollständigkeit zu konservieren, während die Ausdruck-, Lokalisierungs- und Wiederherstellungprozesse auftreten. In-vitro übersetzungssysteme können Vorteile über auf Zellenbasisgenausdruck zum Beispiel haben, wenn das über-ausgedrückte Produkt zur Wirtszelle giftig ist oder wenn fehlende Pfosten-Übersetzungsänderung in den bakteriellen Ausdrucksystemen die Funktionalität der Säugetier- Proteine oder Mangel an vorhandenem Membranenraum verdirbt, Funktionsausdruck verbieten.rn Der Nachahmer von biologische Membranen wie feste gestützte Lipidmembranen sind als Plattform am meisten benutzt, Proteinmembraneninteraktionen nachzuforschen. Wir sind in der Lage, Membranenproteinsorte, da wir eine Plattform für Membranenproteinsynthese vorstellen, nämlich die in-vitrosynthese der Membranenproteine in ein Peptid gestütztes Membranensystem zu adressieren. Die Wiederherstellung der Membranenproteine in den Lipid bilayers resultiert im Allgemeinen mit verschiedenen Proteinanpassungen. Als Alternative erforschen wir dieses System zum ersten Mal, um genaueres Modell zu den zellularen Membranen zu verursachen und ihre Funktion, wie Proteineinfügung, Proteinfunktion und Ligandinteraktionen nachzuahmen.rn In dieser Arbeit ist unser Ziel, komplizierte Transmembraneproteine, wie des Cytochrome bo3-ubiquinol Oxydase (Cyt-bo3) direkt innerhalb der biomimetic vorbildlichen Membrane zu synthetisieren. In unserem System wird festes gestütztes tBLM wie, P19/DMPE/PC als Plattform benutzt. Dieses künstliche Membranensystem mimiks die amphiphile Architektur eines Zelle-abgeleiteten Membranensystems.rn