814 resultados para Multi-objective functions
Resumo:
Environmentally conscious construction has received a significant amount of research attention during the last decades. Even though construction literature is rich in studies that emphasize the importance of environmental impact during the construction phase, most of the previous studies failed to combine environmental analysis with other project performance criteria in construction. This is mainly because most of the studies have overlooked the multi-objective nature of construction projects. In order to achieve environmentally conscious construction, multi-objectives and their relationships need to be successfully analyzed in the complex construction environment. The complex construction system is composed of changing project conditions that have an impact on the relationship between time, cost and environmental impact (TCEI) of construction operations. Yet, this impact is still unknown by construction professionals. Studying this impact is vital to fulfill multiple project objectives and achieve environmentally conscious construction. This research proposes an analytical framework to analyze the impact of changing project conditions on the relationship of TCEI. This study includes green house gas (GHG) emissions as an environmental impact category. The methodology utilizes multi-agent systems, multi-objective optimization, analytical network process, and system dynamics tools to study the relationships of TCEI and support decision-making under the influence of project conditions. Life cycle assessment (LCA) is applied to the evaluation of environmental impact in terms of GHG. The mixed method approach allowed for the collection and analysis of qualitative and quantitative data. Structured interviews of professionals in the highway construction field were conducted to gain their perspectives in decision-making under the influence of certain project conditions, while the quantitative data were collected from the Florida Department of Transportation (FDOT) for highway resurfacing projects. The data collected were used to test the framework. The framework yielded statistically significant results in simulating project conditions and optimizing TCEI. The results showed that the change in project conditions had a significant impact on the TCEI optimal solutions. The correlation between TCEI suggested that they affected each other positively, but in different strengths. The findings of the study will assist contractors to visualize the impact of their decision on the relationship of TCEI.
Resumo:
Large scale disasters, such as the one caused by the Typhoon Haiyan, which devastated portions of the Philippines in 2013, or the catastrophic 2010 Haiti earthquake, which caused major damage in Port-au-Prince and other settlements in the region, have massive and lasting effects on populations. Nowadays, disasters can be considered as a consequence of inappropriately managed risk. These risks are the product of hazards and vulnerability, which refers to the extent to which a community can be affected by the impact of a hazard. In this way, developing countries, due to their greater vulnerability, suffer the highest costs when a disaster occurs. Disaster relief is a challenge for politics, economies, and societies worldwide. Humanitarian organizations face multiple decision problems when responding to disasters. In particular, once a disaster strikes, the distribution of humanitarian aid to the population affected is one of the most fundamental operations in what is called humanitarian logistics. This term is defined as the process of planning, implementing and controlling the effcient, cost-effective ow and storage of goods and materials as well as related information, from the point of origin to the point of consumption, for the purpose of meeting the end bene- ciaries' requirements and alleviate the suffering of vulnerable people, [the Humanitarian Logistics Conference, 2004 (Fritz Institute)]. During the last decade there has been an increasing interest in the OR/MS community in studying this topic, pointing out the similarities and differences between humanitarian and business logistics, and developing models suited to handle the special characteristics of these problems. Several authors have pointed out that traditional logistic objectives, such as minimizing operation cost, are not the most relevant goals in humanitarian operations. Other factors, such as the time of operation, or the design of safe and equitable distribution plans, come to the front, and new models and algorithms are needed to cope with these special features. Up to six attributes related to the distribution plan are considered in our multi-criteria approach. Even though there are usually simple ways to measure the cost of an operation, the evaluation of some other attributes such as security or equity is not easy. As a result, several attribute measures are proposed and developed, focusing on different aspects of the solutions. Furthermore, when metaheuristic solution methods are used, considering non linear objective functions does not increase the complexity of the algorithms significantly, and thus more accurate measures can be utilized...
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Le Système Stockage de l’Énergie par Batterie ou Batterie de Stockage d’Énergie (BSE) offre de formidables atouts dans les domaines de la production, du transport, de la distribution et de la consommation d’énergie électrique. Cette technologie est notamment considérée par plusieurs opérateurs à travers le monde entier, comme un nouveau dispositif permettant d’injecter d’importantes quantités d’énergie renouvelable d’une part et d’autre part, en tant que composante essentielle aux grands réseaux électriques. De plus, d’énormes avantages peuvent être associés au déploiement de la technologie du BSE aussi bien dans les réseaux intelligents que pour la réduction de l’émission des gaz à effet de serre, la réduction des pertes marginales, l’alimentation de certains consommateurs en source d’énergie d’urgence, l’amélioration de la gestion de l’énergie, et l’accroissement de l’efficacité énergétique dans les réseaux. Cette présente thèse comprend trois étapes à savoir : l’Étape 1 - est relative à l’utilisation de la BSE en guise de réduction des pertes électriques ; l’Étape 2 - utilise la BSE comme élément de réserve tournante en vue de l’atténuation de la vulnérabilité du réseau ; et l’Étape 3 - introduit une nouvelle méthode d’amélioration des oscillations de fréquence par modulation de la puissance réactive, et l’utilisation de la BSE pour satisfaire la réserve primaire de fréquence. La première Étape, relative à l’utilisation de la BSE en vue de la réduction des pertes, est elle-même subdivisée en deux sous-étapes dont la première est consacrée à l’allocation optimale et le seconde, à l’utilisation optimale. Dans la première sous-étape, l’Algorithme génétique NSGA-II (Non-dominated Sorting Genetic Algorithm II) a été programmé dans CASIR, le Super-Ordinateur de l’IREQ, en tant qu’algorithme évolutionniste multiobjectifs, permettant d’extraire un ensemble de solutions pour un dimensionnement optimal et un emplacement adéquat des multiple unités de BSE, tout en minimisant les pertes de puissance, et en considérant en même temps la capacité totale des puissances des unités de BSE installées comme des fonctions objectives. La première sous-étape donne une réponse satisfaisante à l’allocation et résout aussi la question de la programmation/scheduling dans l’interconnexion du Québec. Dans le but de réaliser l’objectif de la seconde sous-étape, un certain nombre de solutions ont été retenues et développées/implantées durant un intervalle de temps d’une année, tout en tenant compte des paramètres (heure, capacité, rendement/efficacité, facteur de puissance) associés aux cycles de charge et de décharge de la BSE, alors que la réduction des pertes marginales et l’efficacité énergétique constituent les principaux objectifs. Quant à la seconde Étape, un nouvel indice de vulnérabilité a été introduit, formalisé et étudié ; indice qui est bien adapté aux réseaux modernes équipés de BES. L’algorithme génétique NSGA-II est de nouveau exécuté (ré-exécuté) alors que la minimisation de l’indice de vulnérabilité proposé et l’efficacité énergétique représentent les principaux objectifs. Les résultats obtenus prouvent que l’utilisation de la BSE peut, dans certains cas, éviter des pannes majeures du réseau. La troisième Étape expose un nouveau concept d’ajout d’une inertie virtuelle aux réseaux électriques, par le procédé de modulation de la puissance réactive. Il a ensuite été présenté l’utilisation de la BSE en guise de réserve primaire de fréquence. Un modèle générique de BSE, associé à l’interconnexion du Québec, a enfin été proposé dans un environnement MATLAB. Les résultats de simulations confirment la possibilité de l’utilisation des puissances active et réactive du système de la BSE en vue de la régulation de fréquence.
Resumo:
In the standard Vehicle Routing Problem (VRP), we route a fleet of vehicles to deliver the demands of all customers such that the total distance traveled by the fleet is minimized. In this dissertation, we study variants of the VRP that minimize the completion time, i.e., we minimize the distance of the longest route. We call it the min-max objective function. In applications such as disaster relief efforts and military operations, the objective is often to finish the delivery or the task as soon as possible, not to plan routes with the minimum total distance. Even in commercial package delivery nowadays, companies are investing in new technologies to speed up delivery instead of focusing merely on the min-sum objective. In this dissertation, we compare the min-max and the standard (min-sum) objective functions in a worst-case analysis to show that the optimal solution with respect to one objective function can be very poor with respect to the other. The results motivate the design of algorithms specifically for the min-max objective. We study variants of min-max VRPs including one problem from the literature (the min-max Multi-Depot VRP) and two new problems (the min-max Split Delivery Multi-Depot VRP with Minimum Service Requirement and the min-max Close-Enough VRP). We develop heuristics to solve these three problems. We compare the results produced by our heuristics to the best-known solutions in the literature and find that our algorithms are effective. In the case where benchmark instances are not available, we generate instances whose near-optimal solutions can be estimated based on geometry. We formulate the Vehicle Routing Problem with Drones and carry out a theoretical analysis to show the maximum benefit from using drones in addition to trucks to reduce delivery time. The speed-up ratio depends on the number of drones loaded onto one truck and the speed of the drone relative to the speed of the truck.
Resumo:
Efficient hill climbers have been recently proposed for single- and multi-objective pseudo-Boolean optimization problems. For $k$-bounded pseudo-Boolean functions where each variable appears in at most a constant number of subfunctions, it has been theoretically proven that the neighborhood of a solution can be explored in constant time. These hill climbers, combined with a high-level exploration strategy, have shown to improve state of the art methods in experimental studies and open the door to the so-called Gray Box Optimization, where part, but not all, of the details of the objective functions are used to better explore the search space. One important limitation of all the previous proposals is that they can only be applied to unconstrained pseudo-Boolean optimization problems. In this work, we address the constrained case for multi-objective $k$-bounded pseudo-Boolean optimization problems. We find that adding constraints to the pseudo-Boolean problem has a linear computational cost in the hill climber.
Resumo:
The objective of this study is to identify the optimal designs of converging-diverging supersonic and hypersonic nozzles that perform at maximum uniformity of thermodynamic and flow-field properties with respect to their average values at the nozzle exit. Since this is a multi-objective design optimization problem, the design variables used are parameters defining the shape of the nozzle. This work presents how variation of such parameters can influence the nozzle exit flow non-uniformities. A Computational Fluid Dynamics (CFD) software package, ANSYS FLUENT, was used to simulate the compressible, viscous gas flow-field in forty nozzle shapes, including the heat transfer analysis. The results of two turbulence models, k-e and k-ω, were computed and compared. With the analysis results obtained, the Response Surface Methodology (RSM) was applied for the purpose of performing a multi-objective optimization. The optimization was performed with ModeFrontier software package using Kriging and Radial Basis Functions (RBF) response surfaces. Final Pareto optimal nozzle shapes were then analyzed with ANSYS FLUENT to confirm the accuracy of the optimization process.
Resumo:
La gestione del fine vita dei prodotti è un argomento di interesse attuale per le aziende; sempre più spesso l’imprese non possono più esimersi dall’implementare un efficiente sistema di Reverse Logistics. Per rispondere efficacemente a queste nuove esigenze diventa fondamentale ampliare i tradizionali sistemi logistici verso tutte quelle attività svolte all’interno della Reverse Logitics. Una gestione efficace ed efficiente dell’intera supply chain è un aspetto di primaria importanza per un’azienda ed incide notevolmente sulla sua competitività; proprio per perseguire questo obiettivo, sempre più aziende promuovono politiche di gestione delle supply chain sia Lean che Green. L’obiettivo di questo lavoro, nato dalle esigenze descritte sopra, è quello di applicare un modello innovativo che consideri sia politiche di gestione Lean, che dualmente politiche Green, alla gestione di una supply chain del settore automotive, comprendente anche le attività di gestione dei veicoli fuori uso (ELV). Si è analizzato per prima cosa i principi base e gli strumenti utilizzati per l’applicazione della Lean Production e del Green supply chain management e in seguito si è analizzato le caratteristiche distintive della Reverse Logistics e in particolare delle reti che trattano i veicoli a fine vita. L’obiettivo finale dello studio è quello di elaborare e implementare, tramite l’utilizzo del software AMPL, un modello di ottimizzazione multi-obiettivo (MOP- Multi Objective Optimization) Lean e Green a una Reverse Supply Chain dei veicoli a fine vita. I risultati ottenuti evidenziano che è possibile raggiungere un ottimo compromesso tra le due logiche. E' stata effettuata anche una valutazione economica dei risultati ottenuti, che ha evidenziato come il trade-off scelto rappresenti anche uno degli scenari con minor costi.
Resumo:
This paper presents a multi-objective optimization strategy for heavy truck suspension systems based on modified skyhook damping (MSD) control, which improves ride comfort and road-friendliness simultaneously. A four-axle heavy truck-road coupling system model was established using functional virtual prototype technology; the model was then validated through a ride comfort test. As the mechanical properties and time lag of dampers were taken into account, MSD control of active and semi-active dampers was implemented using Matlab/Simulink. Through co-simulations with Adams and Matlab, the effects of passive, semi-active MSD control, and active MSD control were analyzed and compared; thus, control parameters which afforded the best integrated performance were chosen. Simulation results indicated that MSD control improves a truck’s ride comfort and roadfriendliness, while the semi-active MSD control damper obtains road-friendliness comparable to the active MSD control damper.
Resumo:
This paper presents advanced optimization techniques for Mission Path Planning (MPP) of a UAS fitted with a spore trap to detect and monitor spores and plant pathogens. The UAV MPP aims to optimise the mission path planning search and monitoring of spores and plant pathogens that may allow the agricultural sector to be more competitive and more reliable. The UAV will be fitted with an air sampling or spore trap to detect and monitor spores and plant pathogens in remote areas not accessible to current stationary monitor methods. The optimal paths are computed using a Multi-Objective Evolutionary Algorithms (MOEAs). Two types of multi-objective optimisers are compared; the MOEA Non-dominated Sorting Genetic Algorithms II (NSGA-II) and Hybrid Game are implemented to produce a set of optimal collision-free trajectories in three-dimensional environment. The trajectories on a three-dimension terrain, which are generated off-line, are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different position with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of coupling a Hybrid-Game strategy to a MOEA for MPP tasks. The reduction of numerical cost is an important point as the faster the algorithm converges the better the algorithms is for an off-line design and for future on-line decisions of the UAV.
Resumo:
One of the main aims in artificial intelligent system is to develop robust and efficient optimisation methods for Multi-Objective (MO) and Multidisciplinary Design (MDO) design problems. The paper investigates two different optimisation techniques for multi-objective design optimisation problems. The first optimisation method is a Non-Dominated Sorting Genetic Algorithm II (NSGA-II). The second method combines the concepts of Nash-equilibrium and Pareto optimality with Multi-Objective Evolutionary Algorithms (MOEAs) which is denoted as Hybrid-Game. Numerical results from the two approaches are compared in terms of the quality of model and computational expense. The benefit of using the distributed hybrid game methodology for multi-objective design problems is demonstrated.
Resumo:
Computation Fluid Dynamics (CFD) has become an important tool in optimization and has seen successful in many real world applications. Most important among these is in the optimisation of aerodynamic surfaces which has become Multi-Objective (MO) and Multidisciplinary (MDO) in nature. Most of these have been carried out for a given set of input parameters such as free stream Mach number and angle of attack. One cannot ignore the fact that in aerospace engineering one frequently deals with situations where the design input parameters and flight/flow conditions have some amount of uncertainty attached to them. When the optimisation is carried out for fixed values of design variables and parameters however, one arrives at an optimised solution that results in good performance at design condition but poor drag or lift to drag ratio at slightly off-design conditions. The challenge is still to develop a robust design that accounts for uncertainty in the design in aerospace applications. In this paper this issue is taken up and an attempt is made to prevent the fluctuation of objective performance by using robust design technique or Uncertainty.
Resumo:
This study investigates the application of two advanced optimization methods for solving active flow control (AFC) device shape design problem and compares their optimization efficiency in terms of computational cost and design quality. The first optimization method uses hierarchical asynchronous parallel multi-objective evolutionary algorithm and the second uses hybridized evolutionary algorithm with Nash-Game strategies (Hybrid-Game). Both optimization methods are based on a canonical evolution strategy and incorporate the concepts of parallel computing and asynchronous evaluation. One type of AFC device named shock control bump (SCB) is considered and applied to a natural laminar flow (NLF) aerofoil. The concept of SCB is used to decelerate supersonic flow on suction/pressure side of transonic aerofoil that leads to a delay of shock occurrence. Such active flow technique reduces total drag at transonic speeds which is of special interest to commercial aircraft. Numerical results show that the Hybrid-Game helps an EA to accelerate optimization process. From the practical point of view, applying a SCB on the suction and pressure sides significantly reduces transonic total drag and improves lift-to-drag (L/D) value when compared to the baseline design.
Resumo:
Railway timetabling is an important process in train service provision as it matches the transportation demand with the infrastructure capacity while customer satisfaction is also considered. It is a multi-objective optimisation problem, in which a feasible solution, rather than the optimal one, is usually taken in practice because of the time constraint. The quality of services may suffer as a result. In a railway open market, timetabling usually involves rounds of negotiations among a number of self-interested and independent stakeholders and hence additional objectives and constraints are imposed on the timetabling problem. While the requirements of all stakeholders are taken into consideration simultaneously, the computation demand is inevitably immense. Intelligent solution-searching techniques provide a possible solution. This paper attempts to employ a particle swarm optimisation (PSO) approach to devise a railway timetable in an open market. The suitability and performance of PSO are studied on a multi-agent-based railway open-market negotiation simulation platform.