A genetic algorithm for the one-dimensional cutting stock problem with setups
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
02/02/2015
02/02/2015
01/05/2014
|
Resumo |
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) This paper investigates the one-dimensional cutting stock problem considering two conflicting objective functions: minimization of both the number of objects and the number of different cutting patterns used. A new heuristic method based on the concepts of genetic algorithms is proposed to solve the problem. This heuristic is empirically analyzed by solving randomly generated instances and also practical instances from a chemical-fiber company. The computational results show that the method is efficient and obtains positive results when compared to other methods from the literature. |
Formato |
165-187 |
Identificador |
http://dx.doi.org/10.1590/0101-7438.2014.034.02.0165 Pesquisa Operacional. Sociedade Brasileira de Pesquisa Operacional, v. 34, n. 2, p. 165-187, 2014. 0101-7438 http://hdl.handle.net/11449/114164 10.1590/0101-7438.2014.034.02.0165 S0101-74382014000200165 S0101-74382014000200165.pdf |
Idioma(s) |
eng |
Publicador |
Sociedade Brasileira de Pesquisa Operacional |
Relação |
Pesquisa Operacional |
Direitos |
openAccess |
Palavras-Chave | #integer optimization #cutting stock problem with setups #genetic algorithm |
Tipo |
info:eu-repo/semantics/article |