A genetic algorithm for the one-dimensional cutting stock problem with setups


Autoria(s): Araujo, Silvio Alexandre de; Poldi, Kelly Cristina; Smith, Jim
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

02/02/2015

02/02/2015

01/05/2014

Resumo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

This paper investigates the one-dimensional cutting stock problem considering two conflicting objective functions: minimization of both the number of objects and the number of different cutting patterns used. A new heuristic method based on the concepts of genetic algorithms is proposed to solve the problem. This heuristic is empirically analyzed by solving randomly generated instances and also practical instances from a chemical-fiber company. The computational results show that the method is efficient and obtains positive results when compared to other methods from the literature.

Formato

165-187

Identificador

http://dx.doi.org/10.1590/0101-7438.2014.034.02.0165

Pesquisa Operacional. Sociedade Brasileira de Pesquisa Operacional, v. 34, n. 2, p. 165-187, 2014.

0101-7438

http://hdl.handle.net/11449/114164

10.1590/0101-7438.2014.034.02.0165

S0101-74382014000200165

S0101-74382014000200165.pdf

Idioma(s)

eng

Publicador

Sociedade Brasileira de Pesquisa Operacional

Relação

Pesquisa Operacional

Direitos

openAccess

Palavras-Chave #integer optimization #cutting stock problem with setups #genetic algorithm
Tipo

info:eu-repo/semantics/article