867 resultados para Mining machinery
Resumo:
The global concern about sustainability has been growing and the mining industry is questioned about its environmental and social performance. Corporate social responsibility (CSR) is an important issue for the extractive industries. The main objective of this study was to investigate the relationship between CSR performance and financial performance of selected mining companies. The study was conducted by identifying and comparing a selection of available CSR performance indicators with financial performance indicators. Based on the result of the study, the relationship between CSR performance and financial performance is unclear for the selected group of companies. The result is mixed and no industry specific realistic way to measure CSR performance uniformly is available. The result as a whole is contradictory and varies at company level as well as based on the selected indicators. The result of this study confirms that the relationship between CSR performance and financial performance is complicated and difficult to determine. As an outcome, evaluation of benefits of CSR in the mining sector could better be analyzed based on different attributes.
Resumo:
With the increasing concern of the sustainable approach of gold mining, thiosulphate has been researched as an alternative lixiviant to cyanide since cyanide is toxic to the environment. In order to investigate the possibility of thiosulphate leaching application in the coming future, life cycle assessment, is conducted to compare the environmental footprint of cyanidation and thiosulphate leaching. The result showed the most significant environmental impact of cyanidation is toxicity to human, while the ammonia of thiosulphate leaching is also a major concern of acidification. In addition, an ecosystem evaluation is also performed to indicate the potential damages caused by an example of cyanide spill at Kittilä mine, resulting in significant environmental risk cost that has to be taken into account for decision making. From the opinion collected from an online LinkedIn discussion forum, the anxiety of sustainability alone would not be enough to contribute a significant change of conventional cyanidation, until the tighten policy of cyanide use. International Cyanide Code, therefore, is crucial for safe gold production. Nevertheless, it is still thoughtful to consider the values of healthy ecosystem and the gold for long-term benefit.
Resumo:
Vibrations in machines can cause noise, decrease the performance, or even damage the machine. Vibrations appear if there is a source of vibration that excites the system. In the worst case scenario, the excitation frequency coincides with the natural frequency of the machine causing resonance. Rotating machines are a machine type, where the excitation arises from the machine itself. The excitation originates from the mass imbalance in the rotating shaft, which always exists in machines that are manufactured using conventional methods. The excitation has a frequency that is dependent on the rotational speed of the machine. The rotating machines in industrial use are usually designed to rotate at a constant rotational speed, the case where the resonances can be easily avoided. However, the machines that have a varying operational speed are more problematic due to a wider range of frequencies that have to be avoided. Vibrations, which frequencies equal to rotational speed frequency of the machine are widely studied and considered in the typical machine design process. This study concentrates on vibrations, which arise from the excitations having frequencies that are multiples of the rotational speed frequency. These vibrations take place when there are two or more excitation components in a revolution of a rotating shaft. The dissertation introduces four studies where three kinds of machines are experiencing vibrations caused by different excitations. The first studied case is a directly driven permanent magnet generator used in a wind power plant. The electromagnetic properties of the generator cause harmonic excitations in the system. The dynamic responses of the generator are studied using the multibody dynamics formulation. In another study, the finite element method is used to study the vibrations of a magnetic gear due to excitations, which frequencies equal to the rotational speed frequency. The objective is to study the effects of manufacturing and assembling inaccuracies. Particularly, the eccentricity of the rotating part with respect to non-rotating part is studied since the eccentric operation causes a force component in the direction of the shortest air gap. The third machine type is a tube roll of a paper machine, which is studied while the tube roll is supported using two different structures. These cases are studied using different formulations. In the first case, the tube roll is supported by spherical roller bearings, which have some wavinesses on the rolling surfaces. Wavinesses cause excitations to the tube roll, which starts to resonate at the frequency that is a half of the first natural frequency. The frequency is in the range where the machine normally operates. The tube roll is modeled using the finite element method and the bearings are modeled as nonlinear forces between the tube roll and the pedestals. In the second case studied, the tube roll is supported by freely rotating discs, which wavinesses are also measured. The above described phenomenon is captured as well in this case, but the simulation methodology is based on the flexible multibody dynamics formulation. The simulation models that are used in both of the last two cases studied are verified by measuring the actual devices and comparing the simulated and measured results. The results show good agreement.
Resumo:
The objective of this research is to observe the state of customer value management in Outotec Oyj, determine the key development areas and develop a phase model with which to guide the development of a customer value based sales tool. The study was conducted with a constructive research approach with the focus of identifying a problem and developing a solution for the problem. As a basis for the study, the current literature involving customer value assessment and solution and customer value selling was studied. The data was collected by conducting 16 interviews in two rounds within the company and it was analyzed by coding openly. First, seven important development areas were identified, out of which the most critical were “Customer value mindset inside the company” and “Coordination of customer value management activities”. Utilizing these seven areas three functionality requirements, “Preparation”, “Outotec’s value creation and communication” and “Documentation” and three development requirements for a customer value sales tool were identified. The study concluded with the formulation of a phase model for building a customer value based sales tool. The model included five steps that were defined as 1) Enable customer value utilization, 2) Connect with the customer, 3) Create customer value, 4) Define tool to facilitate value selling and 5) Develop sales tool. Further practical activities were also recommended as a guide for executing the phase model.
Resumo:
The aim of this thesis is to search how to match the demand and supply effectively in industrial and project-oriented business environment. The demand-supply balancing process is searched through three different phases: the demand planning and forecasting, synchronization of demand and supply and measurement of the results. The thesis contains a single case study that has been implemented in a company called Outotec. In the case study the demand is planned and forecasted with qualitative (judgmental) forecasting method. The quantitative forecasting methods are searched further to support the demand forecast and long term planning. The sales and operations planning process is used in the synchronization of the demand and supply. The demand forecast is applied in the management of a supply chain of critical unit of elemental analyzer. Different meters on operational and strategic level are proposed for the measurement of performance.
Resumo:
Dengue virus (DV)-induced changes in the host cell protein synthesis machinery are not well understood. We investigated the transcriptional changes related to initiation of protein synthesis. The human hepatoma cell line, HepG2, was infected with DV serotype 2 for 1 h at a multiplicity of infection of one. RNA was extracted after 6, 24 and 48 h. Microarray results showed that 36.5% of the translation factors related to initiation of protein synthesis had significant differential expression (Z-score ≥ ±2.0). Confirmation was obtained by quantitative real-time reverse transcription-PCR. Of the genes involved in the activation of mRNA for cap-dependent translation (eIF4 factors), eIF4A, eIF4G1 and eIF4B were up-regulated while the negative regulator of translation eIF4E-BP3 was down-regulated. This activation was transient since at 24 h post-infection levels were not significantly different from control cells. However, at 48 h post-infection, eIF4A, eIF4E, eIF4G1, eIF4G3, eIF4B, and eIF4E-BP3 were down-regulated, suggesting that cap-dependent translation could be inhibited during the progression of infection. To test this hypothesis, phosphorylation of p70S6K and 4E-BP1, which induce cap-dependent protein synthesis, was assayed. Both proteins remained phosphorylated when assayed at 6 h after infection, while infection induced dephosphorylation of p70S6K and 4E-BP1 at 24 and 48 h of infection, respectively. Taken together, these results provide biological evidence suggesting that in HepG2 cells DV sustains activation of the cap-dependent machinery at early stages of infection, but progression of infection switches protein synthesis to a cap-independent process.
Resumo:
This master’s thesis investigates the significant macroeconomic and firm level determinants of CAPEX in Russian oil and mining sectors. It also studies the Russian oil and mining sectors, its development, characteristics and current situation. The panel data methodology was implemented to identify the determinants of CAPEX in Russian oil and mining sectors and to test derived hypotheses. The core sample consists of annual financial data of 45 publicly listed Russian oil and mining sector companies. The timeframe of the thesis research is a six year period from 2007 to 2013. The findings of the master’s thesis have shown that Gross Sales, Return On Assets, Free Cash Flow and Long Term Debt are firm level performance variables along with Russian GDP, Export, Urals and the Reserve Fund are macroeconomic variables that determine the magnitude of new capital expenditures reported by publicly listed Russian oil and mining sector companies. These results are not controversial to the previous research paper, indeed they confirm them. Furthermore, the findings from the emerging countries, such as Malaysia, India and Portugal, are analogous to Russia. The empirical research is edifying and novel. Findings from this master’s thesis are highly valuable for the scientific community, especially, for researchers who investigate the determinant of CAPEX in developing countries. Moreover, the results can be utilized as a cogent argument, when companies and investors are doing strategic decisions, considering the Russian oil and mining sectors.
Resumo:
This thesis introduces heat demand forecasting models which are generated by using data mining algorithms. The forecast spans one full day and this forecast can be used in regulating heat consumption of buildings. For training the data mining models, two years of heat consumption data from a case building and weather measurement data from Finnish Meteorological Institute are used. The thesis utilizes Microsoft SQL Server Analysis Services data mining tools in generating the data mining models and CRISP-DM process framework to implement the research. Results show that the built models can predict heat demand at best with mean average percentage errors of 3.8% for 24-h profile and 5.9% for full day. A deployment model for integrating the generated data mining models into an existing building energy management system is also discussed.
Resumo:
Global energy consumption has been increasing yearly and a big portion of it is used in rotating electrical machineries. It is clear that in these machines energy should be used efficiently. In this dissertation the aim is to improve the design process of high-speed electrical machines especially from the mechanical engineering perspective in order to achieve more reliable and efficient machines. The design process of high-speed machines is challenging due to high demands and several interactions between different engineering disciplines such as mechanical, electrical and energy engineering. A multidisciplinary design flow chart for a specific type of high-speed machine in which computer simulation is utilized is proposed. In addition to utilizing simulation parallel with the design process, two simulation studies are presented. The first is used to find the limits of two ball bearing models. The second is used to study the improvement of machine load capacity in a compressor application to exceed the limits of current machinery. The proposed flow chart and simulation studies show clearly that improvements in the high-speed machinery design process can be achieved. Engineers designing in high-speed machines can utilize the flow chart and simulation results as a guideline during the design phase to achieve more reliable and efficient machines that use energy efficiently in required different operation conditions.
Resumo:
The issue of energy efficiency is attracting more and more attention of academia, business and policy makers worldwide due to increasing environmental concerns, depletion of non-renewable energy resources and unstable energy prices. The significant importance of energy efficiency within gold mining industry is justified by considerable energy intensity of this industry as well as by the high share of energy costs in the total operational costs. In the context of increasing industrial energy consumption energy efficiency improvement may provide significant energy savings and reduction of CO2 emission that is highly important in order to contribute to the global goal of sustainability. The purpose of this research is to identify the ways of energy efficiency improvement relevant for a gold mining company. The study implements single holistic case study research strategy focused on a Russian gold mining company. The research involves comprehensive analysis of company’s energy performance including analysis of energy efficiency and energy management practices. This study provides following theoretical and managerial contributions. Firstly, it proposes a methodology for comparative analysis of energy performance of Russian and foreign gold mining companies. Secondly, this study provides comprehensive analysis of main energy efficiency challenges relevant for a Russian gold mining company. Finally, in order to overcome identified challenges this research conceives a guidance for a gold mining company for implementation of energy management system based on the ISO standard.