914 resultados para Improved Borsch-Supan Method
Resumo:
In this paper, to understand the roles of amorphous structures which were observed within the viromatrix of Rana grylio virus (RGV), an improved immunoelectron microscopy (IEM) method was developed to detect the localization of RGV in carp Epithelipma papulosum cyprinid (EPC) cells. Infected EPC cells were fixed with 4% paraformaldehyde-0.25% glutaraldehyde mixture, dehydrated completely, and embedded in LR White resin. This method allowed good ultrastructural preservation and specific labeling with anti-RGV antibodies. The results of IEM showed that colloidal gold mainly bound to the capsids of viral particles at the stage of viral assembly, while during the viral maturation colloidal gold bound to the envelop of virions. In addition, within the viromatrix, the amorphous structures, including dense floccules, membranous materials and tubules, also had strong colloidal gold signals, revealing that those amorphous structures were participated in RGV assembly. In contrast, no significant gold labeling signals were obtained in negative controls. The present study not only provided further evidence that amorphous structures within the viromatrix were involved in the process of RGV assembly, but also developed an improved IEM method for studying the interaction between iridovirus and host cells. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Improved methods of reduction of bend loss of silicon-on-insulator waveguides were simulated and analyzed by means of effective index method (EIM) and two dimensional beam propagation method (2D-BPM). The simulation results indicate that two different methods, one of which are introducing an offset at the junction of two waveguides and the other is etching groove at the outside of bend waveguide, can decrease bend loss. And the later one is more effective. Meanwhile, experiments validate them. By etching groove, the insertion loss of bend waveguide of R = 16mm, transverse displacement 70mum was decreased 5dB. And its bend loss was almost eliminated.
Resumo:
An improved optical self-heterodyne method utilizing a distributed Bragg reflector (DBR) tunable laser and an optical fiber ring interferometer is presented in this paper. The interference efficiency can be increased by 7 dB compared with the scheme using the conventional Mach-Zehnder interferometer. The unsteady process that the beating frequency experiences in each tuning period is investigated. According to the measurement results, the wavelength and optical power of the tunable laser will be steady when the square-wave frequency is lower than 300 kHz. It has been shown that when a square-wave voltage is applied to the phase section of the tunable laser, the laser linewidths vary in a wide range, and are much larger than that under dc voltage tuning. The errors caused by the variations in the linewidth of the beat signal and optical power can be eliminated using the proposed calibration procedures, and the measurement accuracy can, therefore, be significantly improved. Experiments show that the frequency responses obtained using our method agree well with the data provided by the manufacturer, and the improved optical self-heterodyne method is as accurate as the intensity noise technique.
Resumo:
In this study, we first present the process of the melt epitaxial (ME) growth method, and the improvement of low-temperature electron mobility of the long-wavelength InAsSb epilayers grown by ME in a fused silica boat. The electrical properties were investigated by van der Pauw measurement at 300 and 77 K. It is seen that the electron mobility of the InAsSb samples grown by graphite boat decreased from 55,700 to 26,600 cm(2)/V s when the temperature was reduced from 300 to 77 K, while for the samples grown by fused silica boat, the electron mobility increased from 52,600 at 300 K to 54,400 cm(2)/V s at 77 K. The electron mobility of 54,400cm(2)/Vs is the best result, so far, for the InAsSb materials with cutoff wavelength of 8-12 mum at 77 K. This may be attributed to the reduction of the carbon contamination by using a fused silica boat instead of a graphite boat. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A new regime of plasma-enhanced chemical-vapor deposition (PECVD), referred to as "uninterrupted growth/annealing" method, has been proposed for preparation of high-quality hydrogenated amorphous silicon (a-Si:H) films. By using this regime, the deposition process no longer needs to be interrupted, as done in the chemical annealing or layer by layer deposition, while the growing surface is continuously subjected to an enhanced annealing treatment with atomic hydrogen created in the hydrogen-diluted reactant gas mixture at a relatively high plasma power. The intensity of the hydrogen plasma treatment is controlled at such a level that the deposition conditions of the resultant films approach the threshold for microcrystal formation. In addition, a low level of B-compensation is used to adjust the position of the Fermi level close to the midgap. Under these conditions, we find that the stability and optoelectronic properties of a-Si:H films have been significantly improved. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Single crystalline 3C-SiC epitaxial layers are grown on φ50mm Si wafers by a new resistively heated CVD/LPCVD system, using SiH_4, C_2H_4 and H_2 as gas precursors. X-ray diffraction and Raman scattering measurements are used to investigate the crystallinity of the grown films. Electrical properties of the epitaxial 3C-SiC layers with thickness of 1 ~ 3μm are measured by Van der Pauw method. The improved Hall mobility reaches the highest value of 470cm~2/(V·s) at the carrier concentration of 7.7 * 10~(17)cm~(-3).
Resumo:
For the reciprocal-test fixtures, there are six independent S-parameters to. be determined, and the thru-short-match (TSM) calibration can provide eight calibration equations. In this paper, the relation of calibration equations is investigated. It has been shown that the four equations obtained from the measurement with a transmission standard can be used simultaneously in the calibration. Experimental results show that the different choice of equations will lead to quite different solution, and the calibration accuracy can be improved by taking advantages of the established relation among the calibration equations and properly choosing calibration equations.
Resumo:
High quality hydrogenated amorphous silicon (a-Si:H) films have been prepared by a simple "uninterrupted growth/annealing" plasma enhanced chemical vapor deposition (PECVD) technique, combined with a subtle boron-compensated doping. These a-Si:H films possess a high photosensitivity over 10(6), and exhibit no degradation in photoconductivity and a low light-induced defect density after prolonged illumination. The central idea is to control the growth conditions adjacent to the critical point of phase transition from amorphous to crystalline state, and yet to locate the Fermi level close to the midgap. Our results show that the improved stability and photosensitivity of a-Si:H films prepared by this method can be mainly attributed to the formation of a more robust network structure and reduction in the precursors density of light-induced metastable defects.
Resumo:
An improved BP algorithm for pattern recognition is proposed in this paper. By a function substitution for error measure, it resolves the inconsistency of BP algorithm for pattern recognition problems, i.e. the quadratic error is not sensitive to whether the training pattern is recognized correctly or not. Trained by this new method, the computer simulation result shows that the convergence speed is increased to treble and performance of the network is better than conventional BP algorithm with momentum and adaptive step size.
Resumo:
A density-dependent delta interaction (DDDI) is proposed in the formalism of BCS-type pairing correlations for exotic nuclei whose Fermi surfaces are close to the threshold of the unbound state. It provides the possibility to pick up those states whose wave functions are concentrated in the nuclear region by making the pairing matrix elements state dependent. On this basis, the energy level distributions, occupations, and ground-state properties are self-consistently studied in the RMF theory with deformation. Calculations are performed for the Sr isotopic chain. A good description of the total energy per nucleon, deformations, two-neutron separation energies and isotope shift from the proton drip line to the neutron drip line is found. Especially, by comparing the single-particle structure from the DDDI pairing interaction with that from the constant pairing interaction for a very neutron-rich nucleus it is demonstrated that the DDDI pairing method improves the treatment of the pairing in the continuum.
Resumo:
Metabonomics, the study of metabolites and their roles in various disease states, is a novel methodology arising from the post-genomics era. This methodology has been applied in many fields, including work in cardiovascular research and drug toxicology. In this study, metabonomics method was employed to the diagnosis of Type 2 diabetes mellitus (DM2) based on serum lipid metabolites. The results suggested that serum fatty acid profiles determined by capillary gas chromatography combined with pattern recognition analysis of the data might provide an effective approach to the discrimination of Type 2 diabetic patients from healthy controls. And the applications of pattern recognition methods have improved the sensitivity and specificity greatly. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Marine sponges (Porifera) possess an extraordinary diversity of bioactive metabolites for new drug discovery and development. In vitro cultivation of sponge cells in a bioreactor system is very attractive for the sustainable production of sponge-derived bioactive metabolites; however, it is still a challenging task. The recent establishment of sponge primmorphs, multicellular aggregates from dissociated mixed-cell population (MCP), has been widely acknowledged to hold great promise for cultivation in vitro. Here we present a new method to establish an in vitro sponge primmorph culture from archaeocyte-dominant cell population (ADCP) enriched by a Ficoll gradient, rather than a mixed-cell population (MCP). Our rationale is based upon the totipotency (the ability of a cell to differentiate into other cell types) of archaeocyte cells and the different biological functions of various sponge cell types. A sponge, Hymeniacidon perleve collected from the China Yellow Sea was used as a model system for this investigation. Distinct dynamics of primmorph formation were observed while significant increases in DNA synthesis, cell proliferation (up to threefold), and cell growth (up to fourfold) were achieved. Furthermore, a time-dependent spiculogenesis was clearly demonstrated in our longterm culture, indicating high metabolic activity of primmorphs from the ADCP. This new method represents an important step forward to advance sponge cell culture in vitro that may lead to commercial exploitation of sponge-derived drugs. (C) 2003 Wiley Periodicals, Inc.
Resumo:
The surface structure of the iron oxide nanoparticles obtained by the co-precipitation method has been investigated, and a thin layer of alpha-FeOOH absorbed on surface of the nanoparticle is confirmed by analyses of Fourier transform infrared (FTIR), X-ray photoelectron spectra (XPS) and surface photovoltage spectroscopy (SPS). After annealed at 400 degrees C, the alpha-FeOOH can be converted to gamma-Fe2O3. The simple-annealed procedure resulted in the formation of Fe3O4@gamma-Fe2O3 core/shell structure with improved stability and a higher magnetic saturation value, and also the simple method can be used to obtain core/shell structure in other similar system.
Resumo:
We demonstrated high-efficiency red organic light-emitting diodes (OLEDs) employing a europium complex, Eu (III) tris( thenoyltrifluoroacetone) 3,4,7,8-tetramethyl-1,10-phenanthroline (Eu(TTA)(3)(Tmphen)), as an emitter and a blue electrophosphorescent complex, Iridium ( III) bis[4,6-di-fluorophenyl-pyridinato-N,C-2] picolinate (FIrpic), as an assistant dopant codoped into 4,4-N, N-dicarbazole-biphenyl (CBP) host as an emissive layer. A pure red electroluminescence (EL) only from Eu3+ ions at 612 nm with a full width at half maximum of 3 nm was observed and the EL efficiency was significantly enhanced. The maximum EL efficiency reached 7.9 cd A(-1) at 0.01 mA cm(-2) current density, which is enhanced by 2.8 times compared with electrophosphorescence-undoped devices. The large improvements are attributed to energy transfer assistance effects of FIrpic, indicating a promising method for obtaining efficient red OLEDs based on rare-earth complexes.
Improved color purity and efficiency by a coguest emitter system in doped red light-emitting devices
Resumo:
We demonstrate red organic light-emitting diodes (OLEDs) with improved color purity and electroluminescence (EL) efficiency by codoping a green fluorescent sensitizer 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1, 1, 7,7-tetramethyl-1H, 5H, 11H-(1)-benzopyropyrano(6,7-8-ij)quinolizin-11-one (C545T) as the second dopant and a red fluorescent dye 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) as the lumophore into tris(8-hydroquinoline) aluminum (Alq(3)) host. It was found that the C545 T dopant did not by itself emit but assisted the carrier trapping from the host Alq(3) to the red emitting dopant. The red OLEDs realized by this approach not only kept the purity of the emission color, but also significantly improved the EL efficiency. The current efficiency and power efficiency, respectively, reached 12 cd/A at a current density of 0.3 mA/cm(2) and 10lm/W at a current density of 0.02 mA/cm(2), which are enhanced by 1.4 and 2.6 times compared with devices where the emissive layer is composed of the DCJTB doped Alq(3), and a stable red emission (chromaticity coordinates: x = 0.64, y = 0.36) was obtained in a wide range of voltage. Our results indicate that the coguest system is a promising method for obtaining high-efficiency red OLEDs.