861 resultados para Forms (Mathematics)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established to be true once we expand the formal system with Alfred Tarski s semantical theory of truth, as shown by Stewart Shapiro and Jeffrey Ketland in their semantical arguments for the substantiality of truth. According to them, in Gödel sentences we have an explicit case of true but unprovable sentences, and hence deflationism is refuted. Against that, Neil Tennant has shown that instead of Tarskian truth we can expand the formal system with a soundness principle, according to which all provable sentences are assertable, and the assertability of Gödel sentences follows. This way, the relevant question is not whether we can establish the truth of Gödel sentences, but whether Tarskian truth is a more plausible expansion than a soundness principle. In this work I will argue that this problem is best approached once we think of mathematics as the full human phenomenon, and not just consisting of formal systems. When pre-formal mathematical thinking is included in our account, we see that Tarskian truth is in fact not an expansion at all. I claim that what proof is to formal mathematics, truth is to pre-formal thinking, and the Tarskian account of semantical truth mirrors this relation accurately. However, the introduction of pre-formal mathematics is vulnerable to the deflationist counterargument that while existing in practice, pre-formal thinking could still be philosophically superfluous if it does not refer to anything objective. Against this, I argue that all truly deflationist philosophical theories lead to arbitrariness of mathematics. In all other philosophical accounts of mathematics there is room for a reference of the pre-formal mathematics, and the expansion of Tarkian truth can be made naturally. Hence, if we reject the arbitrariness of mathematics, I argue in this work, we must accept the substantiality of truth. Related subjects such as neo-Fregeanism will also be covered, and shown not to change the need for Tarskian truth. The only remaining route for the deflationist is to change the underlying logic so that our formal languages can include their own truth predicates, which Tarski showed to be impossible for classical first-order languages. With such logics we would have no need to expand the formal systems, and the above argument would fail. From the alternative approaches, in this work I focus mostly on the Independence Friendly (IF) logic of Jaakko Hintikka and Gabriel Sandu. Hintikka has claimed that an IF language can include its own adequate truth predicate. I argue that while this is indeed the case, we cannot recognize the truth predicate as such within the same IF language, and the need for Tarskian truth remains. In addition to IF logic, also second-order logic and Saul Kripke s approach using Kleenean logic will be shown to fail in a similar fashion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he Dirac generator formalism for relativistic Hamiltonian dynamics is reviewed along with its extension to constraint formalism. In these theories evolution is with respect to a dynamically defined parameter, and thus time evolution involves an eleventh generator. These formulations evade the No-Interaction Theorem. But the incorporation of separability reopens the question, and together with the World Line Condition leads to a second no-interaction theorem for systems of three or more particles. Proofs are omitted, but the results of recent research in this area is highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is presentation of the refereed paper accepted for the Conferences' proceedings. The presentation was given on Tuesday, 1 December 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning mathematics is a complex and dynamic process. In this paper, the authors adopt a semiotic framework (Yeh & Nason, 2004) and highlight programming as one of the main aspects of the semiosis or meaning-making for the learning of mathematics. During a 10-week teaching experiment, mathematical meaning-making was enriched when primary students wrote Logo programs to create 3D virtual worlds. The analysis of results found deep learning in mathematics, as well as in technology and engineering areas. This prompted a rethinking about the nature of learning mathematics and a need to employ and examine a more holistic learning approach for the learning in science, technology, engineering, and mathematics (STEM) areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computational algorithm (based on Smullyan's analytic tableau method) that varifies whether a given well-formed formula in propositional calculus is a tautology or not has been implemented on a DEC system 10. The stepwise refinement approch of program development used for this implementation forms the subject matter of this paper. The top-down design has resulted in a modular and reliable program package. This computational algoritlhm compares favourably with the algorithm based on the well-known resolution principle used in theorem provers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical solutions of partial differential equation (PDE) models describing reactive transport phenomena in saturated porous media are often used as screening tools to provide insight into contaminant fate and transport processes. While many practical modelling scenarios involve spatially variable coefficients, such as spatially variable flow velocity, v(x), or spatially variable decay rate, k(x), most analytical models deal with constant coefficients. Here we present a framework for constructing exact solutions of PDE models of reactive transport. Our approach is relevant for advection-dominant problems, and is based on a regular perturbation technique. We present a description of the solution technique for a range of one-dimensional scenarios involving constant and variable coefficients, and we show that the solutions compare well with numerical approximations. Our general approach applies to a range of initial conditions and various forms of v(x) and k(x). Instead of simply documenting specific solutions for particular cases, we present a symbolic worksheet, as supplementary material, which enables the solution to be evaluated for different choices of the initial condition, v(x) and k(x). We also discuss how the technique generalizes to apply to models of coupled multispecies reactive transport as well as higher dimensional problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The book of nature is written in the language of mathematics. This quotation, attributed to Galileo, seemed to hold to an unreasonable1 extent in the era of quantum mechanics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research examines three aspects of becoming a teacher, teacher identity formation in mathematics teacher education: the cognitive and affective aspect, the image of an ideal teacher directing the developmental process, and as an on-going process. The formation of emerging teacher identity was approached in a social psychological framework, in which individual development takes place in social interaction with the context through various experiences. Formation of teacher identity is seen as a dynamic, on-going developmental process, in which an individual intentionally aspires after the ideal image of being a teacher by developing his/her own competence as a teacher. The starting-point was that it is possible to examine formation of teacher identity through conceptualisation of observations that the individual and others have about teacher identity in different situations. The research uses the qualitative case study approach to formation of emerging teacher identity, the individual developmental process and the socially constructed image of an ideal mathematics teacher. Two student cases, John and Mary, and the collective case of teacher educators representing socially shared views of becoming and being a mathematics teacher are presented. The development of each student was examined based on three semi-structured interviews supplemented with written products. The data-gathering took place during the 2005 2006 academic year. The collective case about the ideal image provided during the programme was composed of separate case displays of each teacher educator, which were mainly based on semi-structured interviews in spring term 2006. The intentions and aims set for students were of special interest in the interviews with teacher educators. The interview data was analysed following the modified idea of analytic induction. The formation of teacher identity is elaborated through three themes emerging from theoretical considerations and the cases. First, the profile of one s present state as a teacher may be scrutinised through separate affective and cognitive aspects associated with the teaching profession. The differences between individuals arise through dif-ferent emphasis on these aspects. Similarly, the socially constructed image of an ideal teacher may be profiled through a combination of aspects associated with the teaching profession. Second, the ideal image directing the individual developmental process is the level at which individual and social processes meet. Third, formation of teacher identity is about becoming a teacher both in the eyes of the individual self as well as of others in the context. It is a challenge in academic mathematics teacher education to support the various cognitive and affective aspects associated with being a teacher in a way that being a professional and further development could have a coherent starting-point that an individual can internalise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Images from cell biology experiments often indicate the presence of cell clustering, which can provide insight into the mechanisms driving the collective cell behaviour. Pair-correlation functions provide quantitative information about the presence, or absence, of clustering in a spatial distribution of cells. This is because the pair-correlation function describes the ratio of the abundance of pairs of cells, separated by a particular distance, relative to a randomly distributed reference population. Pair-correlation functions are often presented as a kernel density estimate where the frequency of pairs of objects are grouped using a particular bandwidth (or bin width), Δ>0. The choice of bandwidth has a dramatic impact: choosing Δ too large produces a pair-correlation function that contains insufficient information, whereas choosing Δ too small produces a pair-correlation signal dominated by fluctuations. Presently, there is little guidance available regarding how to make an objective choice of Δ. We present a new technique to choose Δ by analysing the power spectrum of the discrete Fourier transform of the pair-correlation function. Using synthetic simulation data, we confirm that our approach allows us to objectively choose Δ such that the appropriately binned pair-correlation function captures known features in uniform and clustered synthetic images. We also apply our technique to images from two different cell biology assays. The first assay corresponds to an approximately uniform distribution of cells, while the second assay involves a time series of images of a cell population which forms aggregates over time. The appropriately binned pair-correlation function allows us to make quantitative inferences about the average aggregate size, as well as quantifying how the average aggregate size changes with time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the rapid development of various technologies and applications in smart grid implementation, demand response has attracted growing research interests because of its potentials in enhancing power grid reliability with reduced system operation costs. This paper presents a new demand response model with elastic economic dispatch in a locational marginal pricing market. It models system economic dispatch as a feedback control process, and introduces a flexible and adjustable load cost as a controlled signal to adjust demand response. Compared with the conventional “one time use” static load dispatch model, this dynamic feedback demand response model may adjust the load to a desired level in a finite number of time steps and a proof of convergence is provided. In addition, Monte Carlo simulation and boundary calculation using interval mathematics are applied for describing uncertainty of end-user's response to an independent system operator's expected dispatch. A numerical analysis based on the modified Pennsylvania-Jersey-Maryland power pool five-bus system is introduced for simulation and the results verify the effectiveness of the proposed model. System operators may use the proposed model to obtain insights in demand response processes for their decision-making regarding system load levels and operation conditions.