359 resultados para FEA
Resumo:
This article analyzes the study of the relationship among knowledge management, the company's market orientation, innovativeness and organizational outcomes. The survey was conducted based on a survey held with executives from 241 companies in Brazil. The evidence found indicates that knowledge management directly contributes to market orientation, but it requires a clearly defined strategic direction to achieve results and innovativeness. It was also concluded that knowledge, as a resource, leverages other resources of the company, while it requires a direction in relation to the organizational goals in order to be effective.
Resumo:
This study aims to develop and implement a tool called intelligent tutoring system in an online course to help a formative evaluation in order to improve student learning. According to Bloom et al. (1971,117) formative evaluation is a systematic evaluation to improve the process of teaching and learning. The intelligent tutoring system may provide a timely and high quality feedback that not only informs the correctness of the solution to the problem, but also informs students about the accuracy of the response relative to their current knowledge about the solution. Constructive and supportive feedback should be given to students to reveal the right and wrong answers immediately after taking the test. Feedback about the right answers is a form to reinforce positive behaviors. Identifying possible errors and relating them to the instructional material may help student to strengthen the content under consideration. The remedial suggestion should be given in each answer with detaileddescription with regards the materials and instructional procedures before taking next step. The main idea is to inform students about what they have learned and what they still have to learn. The open-source LMS called Moodle was extended to accomplish the formative evaluation, high-quality feedback, and the communal knowledge presented here with a short online financial math course that is being offered at a large University in Brazil. The preliminary results shows that the intelligent tutoring system using high quality feedback helped students to improve their knowledge about the solution to the problems based on the errors of their past cohorts. The results and suggestion for future work are presented and discussed.
Resumo:
Aspects related to the users' cooperative work are not considered in the traditional approach of software engineering, since the user is viewed independently of his/her workplace environment or group, with the individual model generalized to the study of collective behavior of all users. This work proposes a process for software requirements to address issues involving cooperative work in information systems that provide distributed coordination in the users' actions and the communication among them occurs indirectly through the data entered while using the software. To achieve this goal, this research uses ergonomics, the 3C cooperation model, awareness and software engineering concepts. Action-research is used as a research methodology applied in three cycles during the development of a corporate workflow system in a technological research company. This article discusses the third cycle, which corresponds to the process that deals with the refinement of the cooperative work requirements with the software in actual use in the workplace, where the inclusion of a computer system changes the users' workplace, from the face to face interaction to the interaction mediated by the software. The results showed that the highest degree of users' awareness about their activities and other system users contribute to a decrease in their errors and in the inappropriate use of the system.
Resumo:
The study aims to analyze the IT architecture management practices associated with their degree of maturity and the influence of institutional and strategic factors on the decisions involved through a case study in a large telecom organization. The case study allowed us to identify practices that led the company to its current stage of maturity and identify practices that can lead the company to the next stage. The strategic influence was mentioned by most respondents and the institutional influence was present in decisions related to innovation and those dealing with a higher level of uncertainties.
Resumo:
In the present study, pterosaur skull constructions were analysed using a combined approach of finite element analysis (FEA), static investigations as well as applying classical beam theory and lever mechanics. The study concentrates on the operating regime „bite“, where loads are distributed via the dentition or a keratinous rhamphotheca into the skull during jaw occlusion. As a first step, pterosaur tooth constructions were analysed. The different morphologies of the tooth construction determine specific operational ranges, in which the teeth perform best (= greatest resistance against failure). The incomplete enamel-covering of the pterosaur tooth constructions thereby leads to a reduction of strain and stress and to a greater lateral elasticity than for a complete enamel cover. This permits the development of high and lateral compressed tooth constructions. Further stress-absorption occurs in the periodontal membrane, although its mechanical properties can not be clarified unambiguously. A three-dimensionally preserved skull of Anhanguera was chosen as a case-study for the investigation of the skull constructions. CT-scans were made to get information about the internal architecture, supplemented by thin-sections of a rostrum of a second Anhanguera specimen. These showed that the rostrum can be approximated as a double-walled triangular tube with a large central vacuity and an average wall-thickness of the bony layers of about 1 mm. On base of the CT-scans, a stereolithography of the skull of Anhanguera was made on which the jaw adductor and abductor muscles were modelled, permitting to determine muscular forces. The values were used for the lever mechanics, cantilever and space frame analysis. These studies and the FEA show, that the jaw reaction forces are critical for the stability of the skull construction. The large jugal area ventral to the orbita and the inclined occipital region act as buttresses against these loads. In contrast to the orbitotemporal region which is subject to varying loading conditions, the pattern in the rostrum is less complex. Here, mainly bending in dorsal direction and torsion occur. The hollow rostrum leads to a reduction of weight of the skull and to a high bending and torsional resistance. Similar to the Anhanguera skull construction, the skulls of those pterosaur taxa were analysed, from which enough skull material is know to permit a reliable reconstruction. Furthermore, FEA were made from five selected taxa. The comparison of the biomechanical behaviour of the different skull constructions results in major transformational processes: elongation of rostra, inclination of the occipital region, variation of tooth morphology, reduction of the dentition and replacement of teeth by a keratinous hook or rhamphotheca, fusion of naris and antorbital fenestra, and the development of bony and soft-tissue crests. These processes are discussed for their biomechanical effects during bite. Certain optional operational ranges for feeding are assigned to the different skull constructions and previous hypotheses (e.g. skimming) are verified. Using the principle of economisation, these processes help to establish irreversible transformations and to define possible evolutionary pathways. The resulting constructional levels and the structural variations within these levels are interpreted in light of a greater feeding efficiency and reduction of bony mass combined with an increased stability against the various loads. The biomechanical conclusive pathways are used for comparison and verification of recent hypothesis of the phylogenetic systematics of pterosaurs.
Resumo:
In this thesis I present theoretical and experimental results concern- ing the operation and properties of a new kind of Penning trap, the planar trap. It consists of circular electrodes printed on an isolating surface, with an homogeneous magnetic field pointing perpendicular to that surface. The motivation of such geometry is to be found in the construction of an array of planar traps for quantum informa- tional purposes. The open access to radiation of this geometry, and the long coherence times expected for Penning traps, make the planar trap a good candidate for quantum computation. Several proposals for quantum 2-qubit interactions are studied and estimates for their rates are given. An expression for the electrostatic potential is presented, and its fea- tures exposed. A detailed study of the anharmonicity of the potential is given theoretically and is later demonstrated by experiment and numerical simulations, showing good agreement. Size scalability of this trap has been studied by replacing the original planar trap by a trap twice smaller in the experimental setup. This substitution shows no scale effect apart from those expected for the scaling of the parameters of the trap. A smaller lifetime for trapped electrons is seen for this smaller trap, but is clearly matched to a bigger misalignment of the trap’s surface and the magnetic field, due to its more difficult hand manipulation. I also give a hint that this trap may be of help in studying non-linear dynamics for a sextupolarly perturbed Penning trap.
Verifiche numeriche dello stato di sollecitazione di una struttura alare di un velivolo ultraleggero
Resumo:
Lo scopo del progetto è di calcolare, tramite un modello agli elementi finiti, lo stato di sollecitazione delle parti costituenti l’ala di un velivolo ultraleggero, e di visualizzare i risultati della soluzione del calcolo in maniera grafica. L’aeromobile oggetto di studio è lo Yuma 912 S commercializzato da Alisport, un velivolo di categoria ULM (UltraLeggero Motorizzato) con capacità STOL (Short TakeOff and Landing – decollo ed atterraggio corti). Tutto il lavoro di progettazione, modellazione e calcolo è stato eseguito con un’unica tipologia di programma, CATIA V5, disponibile commercialmente, al fine di evitare conflitti tra diversi programmi CAD (per disegno assistito dal calcolatore) e CAE/FEA (per analisi ingegneristica del prodotto). Il lavoro si è articolato nelle seguenti fasi: progettazione assistita dal calcolatore, sviluppo del modello, valutazione della soluzione. I carichi introdotti nell’analisi sono stati scelti considerando le caratteristiche del velivolo ed il proprio diagramma di manovra, quindi calcolati in maniera teorica e successivamente applicati al modello in esame. La soluzione è stata poi visualizzata tramite simulazione della struttura deformata ed applicazione di una scala di colori sulle zone sottoposte ai diversi stati di sollecitazione.
Resumo:
Geometric nonlinearities of flexure hinges introduced by large deflections often complicate the analysis of compliant mechanisms containing such members, and therefore, Pseudo-Rigid-Body Models (PRBMs) have been well proposed and developed by Howell [1994] to analyze the characteristics of slender beams under large deflection. These models, however, fail to approximate the characteristics for the deep beams (short beams) or the other flexure hinges. Lobontiu's work [2001] contributed to the diverse flexure hinge analysis building on the assumptions of small deflection, which also limits the application range of these flexure hinges and cannot analyze the stiffness and stress characteristics of these flexure hinges for large deflection. Therefore, the objective of this thesis is to analyze flexure hinges considering both the effects of large-deflection and shear force, which guides the design of flexure-based compliant mechanisms. The main work conducted in the thesis is outlined as follows. 1. Three popular types of flexure hinges: (circular flexure hinges, elliptical flexure hinges and corner-filleted flexure hinges) are chosen for analysis at first. 2. Commercial software (Comsol) based Finite Element Analysis (FEA) method is then used for correcting the errors produced by the equations proposed by Lobontiu when the chosen flexure hinges suffer from large deformation. 3. Three sets of generic design equations for the three types of flexure hinges are further proposed on the basis of stiffness and stress characteristics from the FEA results. 4. A flexure-based four-bar compliant mechanism is finally studied and modeled using the proposed generic design equations. The load-displacement relationships are verified by a numerical example. The results show that a maximum error about the relationship between moment and rotation deformation is less than 3.4% for a flexure hinge, and it is lower than 5% for the four-bar compliant mechanism compared with the FEA results.
Resumo:
A two-dimensional model to analyze the distribution of magnetic fields in the airgap of a PM electrical machines is studied. A numerical algorithm for non-linear magnetic analysis of multiphase surface-mounted PM machines with semi-closed slots is developed, based on the equivalent magnetic circuit method. By using a modular structure geometry, whose the basic element can be duplicated, it allows to design whatever typology of windings distribution. In comparison to a FEA, permits a reduction in computing time and to directly changing the values of the parameters in a user interface, without re-designing the model. Output torque and radial forces acting on the moving part of the machine can be calculated. In addition, an analytical model for radial forces calculation in multiphase bearingless Surface-Mounted Permanent Magnet Synchronous Motors (SPMSM) is presented. It allows to predict amplitude and direction of the force, depending on the values of torque current, of levitation current and of rotor position. It is based on the space vectors method, letting the analysis of the machine also during transients. The calculations are conducted by developing the analytical functions in Fourier series, taking all the possible interactions between stator and rotor mmf harmonic components into account and allowing to analyze the effects of electrical and geometrical quantities of the machine, being parametrized. The model is implemented in the design of a control system for bearingless machines, as an accurate electromagnetic model integrated in a three-dimensional mechanical model, where one end of the motor shaft is constrained to simulate the presence of a mechanical bearing, while the other is free, only supported by the radial forces developed in the interactions between magnetic fields, to realize a bearingless system with three degrees of freedom. The complete model represents the design of the experimental system to be realized in the laboratory.
Resumo:
The aim of Tissue Engineering is to develop biological substitutes that will restore lost morphological and functional features of diseased or damaged portions of organs. Recently computer-aided technology has received considerable attention in the area of tissue engineering and the advance of additive manufacture (AM) techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. To regenerate tissues more efficiently, an ideal scaffold should have appropriate porosity and pore structure. More sophisticated porous configurations with higher architectures of the pore network and scaffolding structures that mimic the intricate architecture and complexity of native organs and tissues are then required. This study adopts a macro-structural shape design approach to the production of open porous materials (Titanium foams), which utilizes spatial periodicity as a simple way to generate the models. From among various pore architectures which have been studied, this work simulated pore structure by triply-periodic minimal surfaces (TPMS) for the construction of tissue engineering scaffolds. TPMS are shown to be a versatile source of biomorphic scaffold design. A set of tissue scaffolds using the TPMS-based unit cell libraries was designed. TPMS-based Titanium foams were meant to be printed three dimensional with the relative predicted geometry, microstructure and consequently mechanical properties. Trough a finite element analysis (FEA) the mechanical properties of the designed scaffolds were determined in compression and analyzed in terms of their porosity and assemblies of unit cells. The purpose of this work was to investigate the mechanical performance of TPMS models trying to understand the best compromise between mechanical and geometrical requirements of the scaffolds. The intention was to predict the structural modulus in open porous materials via structural design of interconnected three-dimensional lattices, hence optimising geometrical properties. With the aid of FEA results, it is expected that the effective mechanical properties for the TPMS-based scaffold units can be used to design optimized scaffolds for tissue engineering applications. Regardless of the influence of fabrication method, it is desirable to calculate scaffold properties so that the effect of these properties on tissue regeneration may be better understood.
Resumo:
Lo scopo di questo lavoro di tesi è stato quello di studiare il comportamento di un fascio laser interagente con un risonatore ottico, grazie al quale il laser può essere stabilizzato agganciando la sua frequenza di missione ad uno dei modi della cavità. In sintesi la lunghezza d’onda del fascio è vincolata ad assumere valori multipli della lunghezza della cavità, dato che in questo modo si possono decisamente migliorare le caratteristiche spettrali di un laser tipico. La stabilizzazione, e il restringimento di riga del laser, vengono effettuati agganciando la sua frequenza sul modo trasverso fondamentale tramite un sistema di feedback. La cavità è però soggetta a sua volta a fluttuazioni di tipo termico e meccanico. Una variazione in lunghezza del risonatore comporta una variazione in frequenza dei modi. Le derive di frequenza dovute agli effetti termici si possono limitare utilizzando materiali con bassa dilatazione termica posti in ambienti la cui temperatura viene stabilizzata tramite un sistema di feedback. Per le vibrazioni, invece, il lavoro è più complicato: non essendo sufficiente mettere il sistema in ambienti isolati per attenuare le fluttuazioni, è stato recentemente proposto di studiare la posizione migliore dei sostegni affinché le fluttuazioni, e quindi le conseguenti variazioni in lunghezza della cavità, risultino minime. Per analizzare questo problema è stato utilizzato un software open-source per l’analisi agli elementi finiti, Salome-Meca, tramite il quale è stata riprodotta la geometria del un risonatore ottico a nostra disposizione, per simularne il comportamento sotto l’effetto del campo gravitazionale. Da qui si sono ottenuti i dati riguardo lo spostamento degli specchi della cavità in funzione della posizione del sostegno, dai quali si è riuscito a trovare il punto di posizionamento del supporto capace di ridurre lo spostamento di un ordine di grandezza.
Resumo:
In dentistry the restoration of decayed teeth is challenging and makes great demands on both the dentist and the materials. Hence, fiber-reinforced posts have been introduced. The effects of different variables on the ultimate load on teeth restored using fiber-reinforced posts is controversial, maybe because the results are mostly based on non-standardized in vitro tests and, therefore, give inhomogeneous results. This study combines the advantages of in vitro tests and finite element analysis (FEA) to clarify the effects of ferrule height, post length and cementation technique used for restoration. Sixty-four single rooted premolars were decoronated (ferrule height 1 or 2 mm), endodontically treated and restored using fiber posts (length 2 or 7 mm), composite fillings and metal crowns (resin bonded or cemented). After thermocycling and chewing simulation the samples were loaded until fracture, recording first damage events. Using UNIANOVA to analyze recorded fracture loads, ferrule height and cementation technique were found to be significant, i.e. increased ferrule height and resin bonding of the crown resulted in higher fracture loads. Post length had no significant effect. All conventionally cemented crowns with a 1-mm ferrule height failed during artificial ageing, in contrast to resin-bonded crowns (75% survival rate). FEA confirmed these results and provided information about stress and force distribution within the restoration. Based on the findings of in vitro tests and computations we concluded that crowns, especially those with a small ferrule height, should be resin bonded. Finally, centrally positioned fiber-reinforced posts did not contribute to load transfer as long as the bond between the tooth and composite core was intact.
Resumo:
The interest in automatic volume meshing for finite element analysis (FEA) has grown more since the appearance of microfocus CT (μCT), due to its high resolution, which allows for the assessment of mechanical behaviour at a high precision. Nevertheless, the basic meshing approach of generating one hexahedron per voxel produces jagged edges. To prevent this effect, smoothing algorithms have been introduced to enhance the topology of the mesh. However, whether smoothing also improves the accuracy of voxel-based meshes in clinical applications is still under question. There is a trade-off between smoothing and quality of elements in the mesh. Distorted elements may be produced by excessive smoothing and reduce accuracy of the mesh. In the present work, influence of smoothing on the accuracy of voxel-based meshes in micro-FE was assessed. An accurate 3D model of a trabecular structure with known apparent mechanical properties was used as a reference model. Virtual CT scans of this reference model (with resolutions of 16, 32 and 64 μm) were then created and used to build voxel-based meshes of the microarchitecture. Effects of smoothing on the apparent mechanical properties of the voxel-based meshes as compared to the reference model were evaluated. Apparent Young’s moduli of the smooth voxel-based mesh were significantly closer to those of the reference model for the 16 and 32 μm resolutions. Improvements were not significant for the 64 μm, due to loss of trabecular connectivity in the model. This study shows that smoothing offers a real benefit to voxel-based meshes used in micro-FE. It might also broaden voxel-based meshing to other biomechanical domains where it was not used previously due to lack of accuracy. As an example, this work will be used in the framework of the European project ContraCancrum, which aims at providing a patient-specific simulation of tumour development in brain and lungs for oncologists. For this type of clinical application, such a fast, automatic, and accurate generation of the mesh is of great benefit.