261 resultados para Eutectic
Resumo:
Ferritic/martensitic (F/M) steels (T91, HT-9, EP 823) are candidate materials for future liquid lead or lead bismuth eutectic (LBE) cooled nuclear reactors. To understand the corrosion of these materials in LBE, samples of each material were exposed at 535 °C for 600 h and 200 h at an oxygen content of 10 wt%. After the corrosion tests, the samples were analyzed using SEM, WDX and nano-indentation in cross section. Multi-layered oxide scales were found on the sample surfaces. The compositions of these oxide layers are not entirely in agreement with the literature. The nano-indentation results showed that the E-modulus and hardness of the oxide layers are significantly lower than the values for dense bulk oxide materials. It is assumed that the low values stem from high porosity in the oxide layers. Comparison with in-air oxidized steels show that the E-modulus decreases with increasing oxide layer thickness. © 2008 Elsevier B.V. All rights reserved.
Resumo:
The creep behaviour of three pressure diecast commercial zinc-aluminium based alloys: Mazak 3, corresponding to BS 1004A, and the new alloys ZA.8 and ZA.27 with a series of alloys with compositions ranging from 0% to 30% aluminium was investigated. The total creep elongation of commercial alloys was shown to be well correlated using an empirical equation. Based on this a parametrical relationship was derived which allowed the total creep extension to be related to the applied stress, the temperature and the time of test, so that a quantitative assessment of creep of the alloys could be made under different conditions. Deviation from the normal creep kinetics occurred in alloys ZA.8 and ZA.27 at very low stresses, 150°C, due to structural coarsening combined with partial transformation of ε -phase into T' phase. The extent of primary creep was found to increase with aluminium content, but secondary creep rates decreased in the order Mazak 3, ZA.8 and ZA.27. Thus, based on the above equation, ZA.8 was found to have a substantially better total creep resistance than ZA.27, which in turn was marginally better than Mazak 3 for strains higher than 0.5%, but inferior for smaller strains, due to its higher primary creep extension. The superior creep resistance of ZA.8 was found to be due to the presence of strictly-orientated, thin plate-like precipitates of ε(CuZn4) phase in the zinc matrix of the eutectic and the lamellarly decomposed β phase, in which the precipitation morphology and orientation of ε in the zinc matrix was determined. Over broad ranges of temperature and stresses, the stress exponents and activation energies for creep were found to be consistent with some proposed creep rate mechanisms; i.e. viscous glide for Mazak 3, dislocation climb over second phase particles for ZA.8 and dislocation climb for ZA.27, controlled by diffusion in the zinc-rich phase. The morphology of aluminium and copper-rich precipitates formed from the solid solution of zinc was clearly revealed. The former were found to further increase the creep rate of inherently low creep resistant zinc, but the latter contributed significantly to the creep resistance. Excess copper in the composition, however, was not beneficial in improving the creep resistance. Decomposition of β in copper-containing alloys was found to be through a metastable Zn-Al phase which is strongly stabilised by copper, and the final products of the decomposition had a profound effect on the creep strength of the alloys. The poor creep resistance of alloy ZA.27 was due to the presence of particulate products derived from decomposed β-phase and a large volume of fine, equiaxed products of continuously decomposed α-dendrites.
Resumo:
The compressive creep behaviour of six sand cast zinc-rich alloys: No3 and No5, corresponding to BS 1004A and BS 1004B, respectively, alloy No2, ILZRO,.16 and two newer alloys ACuZinc5 and ACuZinc10 was investigated. The total creep contraction of the alloys was found to be well correlated using an empirical equation. On the basis of this equation, a parametrical relationship was derived which allowed the total creep contraction to be related to the applied stress, the temperature and the time of test, so that a quantitative assessment of compressive creep of the alloys could be made under different testing conditions. The primary creep and secondary creep rates were found for the alloys at different temperatures and stresses. Generally, the primary creep contraction was found to increase with copper content, whereas secondary creep rates decreased in the order No3, ACuZinc10, ACuZinc5 and No2. ILZRO.16 was tested only at the highest stress and two higher temperatures. The results showed that ILZRO.16 had higher creep resistance than all the other alloys. Thus, based on the above empirical equation, alloy No2 was found to have a substantially better total creep resistance than alloys No3 and No5, and slightly better than ACuZinc5 and ACuZinc10 for strains up to 1%. Both ACuZinc alloys had higher creep strength than commercial alloys No3 and No5. Alloy No5 had much higher creep resistance than alloy No3 under all conditions. The superior creep resistance of alloy No2 was considered to be due to the presence of small precipitates of -phase in the zinc matrix and a regular eutectic morphology. The stress exponents and activation energies for creep under different testing conditions were found to be consistent with some established creep-controlling mechanisms; i.e. dislocation climb for alloy No3, dislocation climb over second phase particles for alloys No5, No2, ACuZinc10, controlled by lattice diffusion in the zinc-rich phase. The lower creep resistance of alloy No3 was mainly due to the lower creep strength of copper-free primary particles having greater volume than eutectic in the microstructure. Alloys No5, ACuZinc5 and ACuZinc10 showed much better creep resistance than alloy No3, based on the precipitation-hardening due to the presence of small -phase precipitates. The primary dendrites in both ACuZinc alloys however were not of much benefit in improving the creep resistance of the alloys.
Resumo:
Following a scene-setting introduction are detailed reviews of the relevant scientific principles, thermal analysis as a research tool and the development of the zinc-aluminium family of alloys. A recently introduced simultaneous thermal analyser, the STA 1500, its use for differential thermal analysis (DTA) being central to the investigation, is described, together with the sources of support information, chemical analysis, scanning electron microscopy, ingot cooling curves and fluidity spiral castings. The compositions of alloys tested were from the binary zinc-aluminium system, the ternary zinc-aluminium-silicon system at 30%, 50% and 70% aluminium levels, binary and ternary alloys with additions of copper and magnesium to simulate commercial alloys and five widely used commercial alloys. Each alloy was shotted to provide the smaller, 100mg, representative sample required for DTA. The STA 1500 was characterised and calibrated with commercially pure zinc, and an experimental procedure established for the determination of DTA heating curves at 10°C per minute and cooling curves at 2°C per minute. Phase change temperatures were taken from DTA traces, most importantly, liquidus from a cooling curve and solidus from both heating and cooling curves. The accepted zinc-aluminium binary phase diagram was endorsed with the added detail that the eutectic is at 5.2% aluminium rather than 5.0%. The ternary eutectic trough was found to run through the points, 70% Al, 7.1% Si, 545°C; 50% Al, 3.9% Si, 520°C; 30% Al, 1.4% Si, 482°C. The dendrite arm spacing in samples after DTA increased with increasing aluminium content from 130m at 30% to 220m at 70%. The smallest dendrite arm spacing of 60m was in the 30% aluminium 2% silicon alloy. A 1kg ingot of the 10% aluminium binary alloy, insulated with Kaowool, solidified at the same 2°C per minute rate as the DTA samples. A similar sized sand casting was solidified at 3°C per minute and a chill casting at 27°C per minute. During metallographic examination the following features were observed: heavily cored phase which decomposed into ' and '' on cooling; needles of the intermetallic phase FeAl4; copper containing ternary eutectic and copper rich T phase.
Resumo:
The.use of high-chromium cast irons for abrasive wear resistance is restricted due to their poor fracture toughness properties. An.attempt was made to improve the fracture characteristics by altering the distribution, size and.shape of the eutectic carbide phase without sacrificing their excellent wear resistance. This was achieved by additions of molybdenum or tungsten followed by high temperature heat treatments. The absence of these alloying elements or replacement of them with vanadium or manganese did not show any significant effect and the continuous eutectic carbide morphology remained the same after application of high temperature heat treatments. The fracture characteristics of the alloys with these metallurgical variables were evaluated for both sharp-cracks and blunt notches. The results were used in conjunction with metallographic and fractographic observations to establish possible failure mechanisms. The fracture mechanism of the austenitic alloys was found to be controlled not only by the volume percent but was also greatly influenced by the size and distribution of the eutectic carbides. On the other hand, the fracture mechanism of martensitic alloys was independent of the eutectic carbide morphology. The uniformity of the secondary carbide precipitation during hardening heat treatments was shown to be a reason for consistant fracture toughness results being obtained with this series of alloys although their eutectic carbide morphologies were different. The collected data were applied to a model which incorporated the microstructural parameters and correlated them with the experimentally obtained valid stress intensity factors. The stress intensity coefficients of different short-bar fracture toughness test specimens were evaluated from analytical and experimental compliance studies. The.validity and applicability of this non-standard testing technique for determination of the fracture toughness of high-chromium cast irons were investigated. The results obtained correlated well with the valid results obtained from standard fracture toughness tests.
Resumo:
The wear behaviour of a series of chromium containing white irons has been investigated under conditions of high stress grinding abrasion using a specimen on track abrasion testing machine. The measured abrasion resistance of the irons has been explained in terms of microstructure and hardness and with respect to the wear damage observed at and beneath abraded surfaces. During abrasion material removal occurred by cracking and detachment from the matrix of eutectic carbides as well as by penetration and micromachining effects of the abrasive grits being crushed at the wearing surface. Under the particular test conditions used martensitic matrix structures gave higher resistance to abrasion than austenitic or pearlitic. However, no simple relationship was found between general hardness or matrix microhardness at wear surfaces and abrasion resistance, and the test yielded pessimistic results for austenitic irons. The fine structures of the 15% Cr and 30% Cr alloys were studied by thin foil transmission electron microscopy. It was found that both the matrix and carbide constituents could be thinned for examination at 100 Kv using conventional dishing followed by ion beam thinning. Flany of the rodlike eutectic N7C3 carbides were seen to consist of clusters of scalier rods with individual 117C3 crystals quite often containing central cores of matrix constituent. 3oth eutectic and secondary N7C3 carbides were found to contain stacking faults on planes normal to the basal plane. In the eutectic carbides in the 30A Cr iron there was evidence of an in-situ PI7C3 C. transition which had taken place during the hardening heat treatment of this alloy. In the as-cast austenitic matrix iron strain induced martensite was produced at the wear surface contributing to work hardening. The significance of these findings have been discussed in relation to wear performance.
Resumo:
A review of the literature pertaining to the mechanical properties, solidification and segregation effects in nodular cast iron has been made. A series of investigations concerning the influence of microsegregation on mechanical properties of :pearlitic, ferritic and austenitic nodular cast iron have then been reported. The influence of section size on the tensile and impact properties of cornmercial purity and refined ferritic nodular cast iron has been studied. It has been shown. that an increase in section caused a decrease in impact transition temperature of the commercial purity material without greatly affecting the impact transition temperature of the purer material. This effect has been related to increased amounts of segregation effects such as cell boundary carbides in heavier sections of the commercial purity material. Microsegregation studies on the materials used in this thesis have been carried out using an electron probe microanalyser. This technique has shown that concentrations of chromium and manganese and depletions of nickel and silicon occurred at eutectic cell boundaries in nodular cast iron and were often associated with brittle carbides in these areas. These effects have been shown to be more prevalent in heavier sections. The nature of segregation during the solidification of nodular cast iron has been studied by quenching samples of nodular iron during the solidification process. Micro-analysis of such samples has shown that segregation of manganese and chromium occurs by a gradual build-up of these elements at the solid/liquid interface. The microstructures of the quenched specimens revealed carbide filaments connecting graphite nodules and areas of quenched liquid. These filaments have been used as evidence for a revised hypothesis for the solidification of nodular cast iron by a liquid diffusion mechanism. A similar series of experiments has been carried out on two high nickel austenitic irons containing 0.5 per cent manganese and 4 per cent manganese respectively. In both these materials a decrease in elongation was experienced with increasing section. This effect was more drastic in the 4 per cent manganese material which also contained much greater amounts of cell boundary carbide in heavy sections. Micro-analysis of samples of the 4 per cent manganese material quenched during solidification revealed that manganese concentrated in the liquid and that nickel concentrated in the solid during solidification. No segregation of silicon occurred in this material. Carbide filaments appeared in the microstructures of these specimens. A discussion of all the above effects in terms of current concepts is included.
Resumo:
Germanium (Ge) nanowires are of current research interest for high speed nanoelectronic devices due to the lower band gap and high carrier mobility compatible with high K-dielectrics and larger excitonic Bohr radius ensuing a more pronounced quantum confinement effect [1-6]. A general way for the growth of Ge nanowires is to use liquid or a solid growth promoters in a bottom-up approach which allow control of the aspect ratio, diameter, and structure of 1D crystals via external parameters, such as precursor feedstock, temperature, operating pressure, precursor flow rate etc [3, 7-11]. The Solid-phase seeding is preferred for more control processing of the nanomaterials and potential suppression of the unintentional incorporation of high dopant concentrations in semiconductor nanowires and unrequired compositional tailing of the seed-nanowire interface [2, 5, 9, 12]. There are therefore distinct features of the solid phase seeding mechanism that potentially offer opportunities for the controlled processing of nanomaterials with new physical properties. A superior control over the growth kinetics of nanowires could be achieved by controlling the inherent growth constraints instead of external parameters which always account for instrumental inaccuracy. The high dopant concentrations in semiconductor nanowires can result from unintentional incorporation of atoms from the metal seed material, as described for the Al catalyzed VLS growth of Si nanowires [13] which can in turn be depressed by solid-phase seeding. In addition, the creation of very sharp interfaces between group IV semiconductor segments has been achieved by solid seeds [14], whereas the traditionally used liquid Au particles often leads to compositional tailing of the interface [15] . Korgel et al. also described the superior size retention of metal seeds in a SFSS nanowire growth process, when compared to a SFLS process using Au colloids [12]. Here in this work we have used silver and alloy seed particle with different compositions to manipulate the growth of nanowires in sub-eutectic regime. The solid seeding approach also gives an opportunity to influence the crystallinity of the nanowires independent of the substrate. Taking advantage of the readily formation of stacking faults in metal nanoparticles, lamellar twins in nanowires could be formed.
Resumo:
The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge1-xSnx alloy nanowires, with a Sn incorporation up to 9.2[thinsp]at.%, far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. Metal alloy catalysts permitted a greater inclusion of Sn in Ge nanowires compared with conventional Au catalysts, when used during vapour-liquid-solid growth. The addition of an annealing step close to the Ge-Sn eutectic temperature (230[thinsp][deg]C) during cool-down, further facilitated the excessive dissolution of Sn in the nanowires. Sn was distributed throughout the Ge nanowire lattice with no metallic Sn segregation or precipitation at the surface or within the bulk of the nanowires. The non-equilibrium incorporation of Sn into the Ge nanowires can be understood in terms of a kinetic trapping model for impurity incorporation at the triple-phase boundary during growth.
Resumo:
SIMP steel was newly developed as a candidate structural material for the accelerator driven subcritical system. The serious decarburization of SIMP steel because of the high Si content was used to successfully form a self-growing TiC coating on the surface, after the Ti deposition as a first step. This TiC layer can effectively protect the surface from the static liquid lead-bismuth eutectic (LBE) corrosion at 600 °C up to 2000 h in the low oxygen LBE. However, in the oxygen saturated LBE, the TiC coating is oxidized into porous TiO2 after only 500 h and fails to protect. Therefore, the self-growing TiC coating is desired only when the oxygen content of LBE is strictly controlled on a low level.
Resumo:
Uusiutuvan energian käytön lisääntyminen lisää sähkön varastoinnin tarvetta. Litiumioniakku-jen on todettu olevan oivallisia keinoja varastoida sähköä esimerkiksi sähköautojen energian-lähteeksi. Tästä syystä akkujen kysyntä kasvaa nopeaa tahtia, jolloin nykyiset litiumlähteet ei-vät enää riitä tuottamaan tarpeeksi litiumia kasvavaan tarpeeseen. Tämän vuoksi litiumin tal-teenottoon tulee valjastaa uusia litiumin lähteitä, joiden hyödynnettävyys nykyisellä tekniikalla on pienen litiumkonsentraation ja muiden alkali- ja maa-alkalimetallien läsnäolon takia vaikeaa. Tällä hetkellä litiumia otetaan talteen eniten korkean litiumpitoisuuden luonnon suolajärvistä. Nykyisin käytössä oleva litiumin erotusprosessi on hidas ja sen käyttö pienten litiumkonsent-raatioiden suola-altailla on kannattamatonta. Tehokkaampana talteenottomenetelmänä luonnon suolajärvillä nähdään litiumin selektiivinen uutto ionisilla nesteillä. Menetelmä on todettu toi-mivaksi suolajärvillä, joilla on matala litiumkonsentraatio. Uusien suolajärvien käyttöönotto ei ratkaise kaikkia litiumin talteenottoon liittyviä ongelmia, sillä suolajärvet ovat alttiita ilmastonmuutokselle, eikä niiden litiumvarannot ole ehtymättömät. Merien litiumvarantoja sen sijaan pidetään lähes ehtymättöminä. Litiumin talteenotto meristä on mahdollista ionisia nesteitä ja membraaneja hyödyntävällä elektrodialyysilaitteistolla, jolla litiumia voidaan ottaa talteen myös hyvin pienistä pitoisuuksista. Lisäksi on mahdollista, että litiumin talteenottoon yhdistetään juomaveden valmistus. Tällainen vedenpuhdistusprosessi olisi myös hyvä kestävän kehityksen näkökulmasta.
Resumo:
O presente trabalho envolveu a produção de membranas compósitas para separação de CO2 a altas temperaturas. Os compósitos habituais são constituídos por duas fases, uma cerâmica, de céria dopada com gadolínio (Ce0.9Gd0.1O0.95 - CGO) condutora de iões óxido, que funciona como suporte da segunda fase composta por uma mistura eutética de carbonatos alcalinos (Li2CO3 e Na2CO3), que assegura o transporte de iões carbonato. O objetivo do trabalho prende-se com o estudo do transporte de iões através destes compósitos, por forma a perceber se os sais destes compósitos apresentam condução iónica singular ou condução mista. Neste sentido a resposta a esta questão teve por base a realização de ensaios de eficiência faradaica com recurso a amostras compósitas envolvendo matrizes de CGO (condutor de iões óxido) e de aluminato de lítio (não condutor de iões óxido). A preparação tanto de esqueletos porosos como de compósitos foi realizada tendo por base métodos e precursores semelhantes aos usados na literatura. Primeiramente efetuou-se o processamento dos esqueletos porosos para posteriormente impregnação com mistura eutética de carbonatos. Obtidos os compósitos estes foram caraterizados por microscopia de impedância e por microscopia eletrónica de varrimento de forma a serem submetidos mais tarde aos ensaios de eficiência faradaica. Os resultados de eficiência faradaica revelaram que na realidade existem processos de condução mista cuja importância depende das condições de operação da membrana.
Resumo:
The mercury-indium phase diagram has been investigated over the whole composition range from -78°C to the melting point of indium, using thermal analysis, X-ray and superconductivity techniques. This is believed to be the first application of superconductivity measurements to phase diagram investigations. A compound, HgIn, of very limited range of composition, melts congruently at -19.3°C; and gives rise to eutectics at 61.5 at. % indium and -31°C, and at 34.7% indium and -37.2°C. The β phase extends from 2.5 to 19.1 % indium and has a maximum melting point of -14.2°C at 14.2% indium. It forms a peritectic or eutectic at a temperature indistinguishable from the melting point of pure mercury with a solid solution in mercury containing some, but less than 0.3%, indium. A transition from face-centred tetragonal to face-centred cubic in the indium-rich solid solutions at about 93% indium gives rise to a peritectic at 108°C. The solubility of mercury in this face-centred cubic phase falls from about 22% at-31°C to 13% at -78°C. © 1963.
Resumo:
No contexto da utilização de solventes alternativos mais sustentáveis e eficientes, capazes de substituir solventes orgânicos convencionais que apresentam várias desvan-tagens tais como toxicidade, inflamabilidade, volatilidade, etc., foram propostos na lite-ratura várias alternativas entre as quais os solventes eutécticos de origem natural. Para potenciar a sua aplicação em diversas áreas, incluindo a tecnologia biomédica, é necessário estudar as suas propriedades físicas dada a ainda insuficiente base de dados disponível. Assim, o principal objetivo deste trabalho é efetuar a medição da massa vo-lúmica, da viscosidade e do índice de refração de solventes eutécticos de origem natural, formados por cloreto de colina e açúcares, ácidos orgânicos ou álcoois. Para isso, foram escolhidos quatro sistemas modelo, já propostos na literatura: glicerol + cloreto de coli-na + água (proporção molar 2:1:1); glucose + cloreto de colina + água (2:5:5); sacarose + cloreto de colina + água (1:4:4); ácido málico + cloreto de colina + água (1:1:2). Fo-ram ainda avaliados os efeitos da adição de água e/ou da temperatura nas diferentes propriedades físicas. A viscosidade dos solventes eutécticos foi medida entre 293,15 K e 323,15 K, para valores de fração mássica de água entre 5% e 30%. Nesta gama de temperatura, os da-dos experimentais foram modelizados de forma satisfatória por uma equação do tipo Arrhenius. Como esperado, a viscosidade diminuiu com o aumento da temperatura e com o aumento de conteúdo em água. De facto, um aumento da temperatura de 20 °C para 50 °C traduz-se numa diminuição muito significativa da viscosidade dos solventes estudados. O índice de refração foi medido à temperatura de 298,15 K, obtendo-se valores na gama 1,41-1,50. Finalmente, a massa volúmica foi medida entre 298,15 K e 333,15 K. Verifica-se que, nas condições estudadas, a massa volúmica diminui linearmente com a temperatura e com o aumento da fração mássica de água, sendo muito menos sensível ao conteúdo em água ou à temperatura do que a viscosidade.
Resumo:
240 p.