609 resultados para Epr
Resumo:
The present work deals with the investigations on sthe structural spectral and magnetic interactions of transition metal complexes of multidentate ligands from D1-2-pyridyl ketone and N(4)-Substituted thiosemicarbazides.Thiosemicarbazones are thiourea derivatives with the general formula R2N— C(S)—NH—N=CR2. In the solution state, the thiosemicarbazones exhibit the thionethiol tautomerism similar to the keto-enol tautomerism, and in solution state the thiol form predominates and a deprotonation at the thiolate group in alcoholic medium enhances the coordination abilities ofthe thiosemicarbazones.The magnetochemistry of metal complexes of di-2-pyridyl ketone is a current hot subject of research, which mainly owes to the excellent structural diversity of the complexes ranging from cubanes to clusters, with promising ferromagnetic outputs.Only few efforts were aimed at the magnetochemistry of metal complexes of thiosemicarbazones, and that too were concerned with the complexes of bisttltioscinicarbazones). However, as far as the monothiosemicarbazones are concerned, the magnetochemistry of transition metal complexes of di-2-pyridyl ketone thiosemicarbazones turned up quite unexplored. Consequently, an investigation into it appeared novel and promising to us and that prompted this study, which can be regarded as the initial step towards exploring the magnetochemistry of thiosemicarbazone complexes, especially of di-2-pyridyl ketone derivatives.We could successfully isolate single crystals suitable for X-ray diffraction for the first three ligands. To conclude, we have synthesized some new thiosemicarbazones and their transition metal complexes and studied their structural, spectral and magnetic attributes. Some ofthe complexes revealed interesting stereochemistries and possible bridging characteristics with spectroscopic evidences. Unfortunately, single crystal Xray diffraction studies could not be carried out for many of these interesting compounds due to the lack of availability of suitable quality single crystals. However, the magnetic studies provided support for the proposed stereochemistry giving evidences for their magnetically concentrated nature. The magnetic susceptibilities measured at six different temperatures in the 80-298 K range are fitted into different magnetic equations, which provided an idea about the magnetic behavior of the compounds under study. Some of the copper, oxovanadium, nickel and cobalt complexes are found to possess anomalous magnetic moments, i.e., they revealed no regular gradation with temperature. However, some other copper complexes are observed to be antiferromagnetic, due to super-exchange pathways. The manganese complexes and one of the cobalt complexes are also observed to be antiferromagnetic in nature. However, some nickel complexes have turned up to be ferromagnetic. Accordingly, the versatile stereoehemistry and magnetic behavior of the complexes studied, prompt us to conclude that the transition metal complexes of di-2-pyridyl ketone thiosemicarbazones are promising systems for potential magnetic applications.
Resumo:
The work embodied in this thesis was carried out by the author in the Department of Applied Chemistry, CUSAT, Kochi, during the period 2008-2013. The thesis brings to light, our attempts to evaluate the coordination behavior of some compounds of interest. The biological activities of semicarbazones and their metal complexes have been an active area of research during the past years because of their significant role in naturally occurring biological systems. Tridentate NNO and ONO semicarbazone systems formed from heterocyclic and aromatic carbonyl compounds and their transition metal complexes are well-authenticated compounds in this field and their synthesis, crystal structures and spectral studies are well desirable. Hence, we decided to develop a research program aimed at the syntheses, crystal structures and spectral studies of copper complexes with halides and pseudohalides. In addition to single crystal X-ray diffraction studies, various physico-chemical methods of analysis were also used for the characterization of the complexes
Resumo:
This thesis deals with the synthesis, characterisation and catalytic activity studies of some new transition metal complexes of the Schiff bases, derived from quinoxaline—2—carboxaldehyde. The model complexes derived from specially designed and synthesised Schiff bases help us to understand the chemistry of biological systems. Schiff bases derived from heterocyclic aldehydes like quinoxaline-2-carboxaldehyde provide great structural diversity during complexation. The Schiff bases synthesised in the present study ' are quinoxaline—2—carboxa.lidene-2-aminophenol (QAP). quinoxaline—2carboxaldehyde semicarbazone (QSC), quinoxaline-2—carboxalidene—o— phenylenediamine (QOD) and quinoxaline-2-carboxalidene-2-furfurylamine (QFA). The elucidation of the structure of these complexes is done using conductance, magnetic susceptibility measurements. infrared, UV—Vis and EPR spectral studies.
Resumo:
Five copper(II) complexes [CuLCl]2·CuCl2·4H2O (1), [CuLOAc] (2), [CuLNO3]2 (3), [CuLN3] (4) and [CuLNCS]·3/2H2O (5) of di-2-pyridyl ketone-N4-phenyl-3-semicarbazone (HL) were synthesized and characterized by elemental analyses and electronic, infrared and EPR spectral techniques. In all these complexes the semicarbazone undergoes deprotonation and coordinates through enolate oxygen, azomethine and pyridyl nitrogen atoms. All the complexes are EPR active due to the presence of an unpaired electron. EPR spectra of all the complexes in DMF at 77K suggest axial symmetry and the presence of half field signals for the complexes 1 and 3 indicates dimeric structures
Resumo:
Oxovanadium(IV/V) complexes of 2-hydroxyacetophenone- 3-hydroxy-2-naphthoylhydrazone (H2L) have been synthesized and characterized. The complexes were characterized by elemental analyses, IR, electronic and EPR spectra. The oxovanadium(V) complex [VOL (OCH3)] is crystallized in two polymorphic forms, denoted by 1a and 1b, with space groups Pn21a and P 1, respectively. Both have distorted square pyramidal structures.
Resumo:
Eight new transition metal complexes of benzaldehyde-N(4)–phenylsemicarbazone have been synthesized and characterized by elemental analyses, molar conductance, electronic and infrared spectral studies. In all the complexes, the semicarbazone is coordinated as neutral bidentate ligand. 1H NMR spectrum of [Zn(HL)2(OAc)2] shows that there is no enolisation of the ligand in the complex. The magnetic susceptibility measurements indicate that Cr(III), Mn(II), Fe(III), Co(II) and Cu(II) complexes are paramagnetic and Ni(II) is diamagnetic. The EPR spectrum of [Mn(HL)2(OAc)2] in DMF solution at 77K shows hyperfine sextet with low intensity forbidden lines lying between each of the two main hyperfine lines. The g values calculated for the [Cu(HL)2SO4] complex in frozen DMF, indicate the presence of unpaired electron in the dx2−y2 orbital. The metal ligand bonding parameters evaluated showed strong in-plane bonding and in-plane bonding. The ligand and complexes were screened for their possible antimicrobial activities.
Resumo:
Five Mn(II) complexes of bis(thiosemicarbazones) which are represented as [Mn(H2Ac4Ph)Cl2] (1), [Mn(Ac4Ph)H2O] (2), [Mn(H2Ac4Cy)Cl2]·H2O (3), [Mn(H2Ac4Et)Cl2]·3H2O (4) and [Mn(H2Ac4Et)(OAc)2]·3H2O (5) have been synthesized and characterized by elemental analyses, electronic, infrared and EPR spectral techniques. In all the complexes except [Mn(Ac4Ph)H2O], the ligands act as pentadentate neutral molecules and coordinate to Mn(II) ion through two thione sulfur atoms, two azomethine nitrogens and the pyridine nitrogen, suggesting a heptacoordination. While in compound [Mn(Ac4Ph)H2O], the dianionic ligand is coordinated to the metal suggesting six coordination in this case. Magnetic studies indicate the high spin state of Mn(II). Conductivity measurements reveal their non-electrolyte nature. EPR studies indicate five g values for [Mn(Ac4Ph)H2O] showing zero field splitting.
Resumo:
An unusual copper(II) complex [Cu(L1a)2Cl2] CH3OH H2O H3O+Cl (1a) was isolated from a solution of a novel tricopper(II) complex [Cu3(HL1)Cl2]Cl3 2H2O (1) in methanol, where L1a is 3-(2-pyridyl)triazolo [1,5-a]-pyridine, and characterized with single crystal X-ray diffraction study. The tricopper(II) complex of potential ligand 1,5-bis(di-2-pyridyl ketone) carbohydrazone (H2L1) was synthesized and physicochemically characterized, while the formation of the complex 1a was followed by time-dependant monitoring of the UV–visible spectra, which reveals degradation of ligand backbone as intensity loss of bands corresponding to O?Cu(II) charge transfer
Resumo:
Four hydrazone ligands: 2-benzoylpyridine benzoyl hydrazone (HBPB), di-2-pyridyl ketone nicotinoyl hydrazone (HDKN), quinoline-2-carbaldehyde benzoyl hydrazone (HQCB), and quinoline-2-carbaldehyde nicotinoyl hydrazone (HQCN) and four of their complexes with vanadyl salts have been synthesized and characterized. Single crystals of HBPB and complexes [VO(BPB)(l2-O)]2 (1) and [VO(DKN)(l2-O)]2 ½H2O (2) were isolated and characterized by X-ray crystallography. Each of the complexes exhibits a binuclear structure where two vanadium(V) atoms are bridged by two oxygen atoms to form distorted octahedral structures within cis-N2O4 donor sets. In most complexes, the uninegative anions function as tridentate ligands, coordinating through the pyridyl- and azomethine-nitrogen atoms and enolic oxygen whereas in complex [VO(HQCN)(SO4)]SO4 4H2O (4) the ligand is coordinated in the keto form. Complexes [VO(QCB)( OMe)] 1.5H2O (3) and 4 are found to be EPR active and showed well-resolved axial anisotropy with two sets of eight line pattern
Resumo:
Four oxovanadium and one dioxovanadium complex with 2-hydroxyacetophenone N(4)- phenylthiosemicarbazone (H2L) which are represented as [VOLphen]·2H2O (1), [VOLbipy] (2), [VOLdmbipy] (3), [VOL]2 (4) and [VO2HL]·CH3OH (5) have been synthesized and characterized by elemental analyses, electronic, infrared and EPR spectral techniques. In all the complexes 1–4 the ligand coordinates through phenolic oxygen, azomethine nitrogen and thiolate sulfur. But in complex [VO2HL]·CH3OH, coordination takes place in thione form instead of thiolate sulfur. All the complexes except [VO2HL]·CH3OH are EPR active due to the presence of an unpaired electron. In frozen DMF at 77 K, all the oxovanadium(IV) complexes show axial anisotropy with two sets of eight line patterns
Resumo:
Six new copper complexes of di-2-pyridyl ketone nicotinoylhydrazone (HDKN) have been synthesized. The complexes have been characterized by a variety of spectroscopic techniques and the structure of [Cu(DKN)2]·H2O has been determined by single crystal X-ray diffraction. The compound [Cu(DKN)2]·H2O crystallized in the monoclinic space group P21 and has a distorted octahedral geometry. The IR spectra revealed the presence of variable modes of chelation for the investigated ligand. The EPR spectra of compounds [Cu2(DKN)2( -N3)2] and [Cu2(DKN)2( -NCS)2] in polycrystalline state suggest a dimeric structure as they exhibited a half field signal, which indicate the presence of a weak interaction between two Cu(II) ions in these complexes
Resumo:
An interesting series of nine new copper(II) complexes [Cu2L2(OAc)2] H2O (1), [CuLNCS] ½H2O (2), [CuLNO3] ½H2O (3), [Cu(HL)Cl2] H2O (4), [Cu2(HL)2(SO4)2] 4H2O (5), [CuLClO4] ½H2O (6), [CuLBr] 2H2O (7), [CuL2] H2O (8) and [CuLN3] CH3OH (9) of 2-benzoylpyridine-N(4)-phenyl semicarbazone (HL) have been synthesized and physico-chemically characterized. The tridentate character of the semicarbazone is inferred from IR spectra. Based on the EPR studies, spin Hamiltonian and bonding parameters have been calculated. The g values, calculated for all the complexes in frozen DMF, indicate the presence of the unpaired electron in the dx2 y2 orbital. The structure of the compound, [Cu2L2(OAc)2] (1a) has been resolved using single crystal X-ray diffraction studies. The crystal structure revealed monoclinic space group P21/n. The coordination geometry about the copper(II) in 1a is distorted square pyramidal with one pyridine nitrogen atom, the imino nitrogen, enolate oxygen and acetate oxygen in the basal plane, an acetate oxygen form adjacent moiety occupies the apical position, serving as a bridge to form a centrosymmetric dimeric structure
Resumo:
Mn(II) complexes derived from a set of acylhydrazones were synthesised and characterized by elemental analyzes, IR, UV–vis and X-band EPR spectral studies as well as conductivity and magnetic susceptibility measurements. In the reported complexes, the hydrazones exist either in the keto or enolate form, as evidenced by IR spectral data. Crystal structures of two complexes are well established using single crystal X-ray diffraction studies. In both of these complexes two equivalent monoanionic ligands are coordinated in a meridional fashion using cis pyridyl, trans azomethine nitrogen and cis enolate oxygen atoms positioned very nearly perpendicular to each other. EPR spectra in DMF solutions at 77 K show hyperfine sextets and in some of the complexes the low intensity forbidden lines lying between each of the two hyperfine lines are also observed
Resumo:
Organisms generally respond to iron deficiency by increasing their capacity to take up iron and by consuming intracellular iron stores. Escherichia coli, in which iron metabolism is particularly well understood, contains at least 7 iron-acquisition systems encoded by 35 iron-repressed genes. This Fe-dependent repression is mediated by a transcriptional repressor, Fur ( ferric uptake regulation), which also controls genes involved in other processes such as iron storage, the Tricarboxylic Acid Cycle, pathogenicity, and redox-stress resistance. Our macroarray-based global analysis of iron- and Fur-dependent gene expression in E. coli has revealed several novel Fur-repressed genes likely to specify at least three additional iron- transport pathways. Interestingly, a large group of energy metabolism genes was found to be iron and Fur induced. Many of these genes encode iron- rich respiratory complexes. This iron- and Fur-dependent regulation appears to represent a novel iron-homeostatic mechanism whereby the synthesis of many iron- containing proteins is repressed under iron- restricted conditions. This mechanism thus accounts for the low iron contents of fur mutants and explains how E. coli can modulate its iron requirements. Analysis of Fe-55-labeled E. coli proteins revealed a marked decrease in iron- protein composition for the fur mutant, and visible and EPR spectroscopy showed major reductions in cytochrome b and d levels, and in iron- sulfur cluster contents for the chelator-treated wild-type and/or fur mutant, correlating well with the array and quantitative RT-PCR data. In combination, the results provide compelling evidence for the regulation of intracellular iron consumption by the Fe2+-Fur complex.
Resumo:
Equilibrium study on complex formation of Co(II), Ni(II), Cu(II) and Zn(II), hereafter M(II), with the quadridentate (O-, N, O-, N) donor ligand, N-(2-hydroxybenzyl)-L-histidine (H(2)hb-L-his, hereafter H2L), in the absence and in the presence of typical (N, N) donor bidentate ligands, 1,10 phenanthroline(phen), 2, 2'-bipyridine(bipy), ethylenediamine(en), hereafter B, in aqueous solution at 25 +/- 1 degrees C was done at a fixed ionic strength, I = 0.1 mol dm(-3) (NaNO3) by combined pH-metric, UV-Vis and EPR measurements provide evidence for the formation of mononuclear and dinuclear binary and mixed ligand complexes of the types: M(L), M(L)(2)(2-), M-2(L)(2+), M-2(H-1L)(+), M(L)(B), (B)M(H-1L)M(B)(+). The imidazole moiety of the ligand is found to act as a bridging bidentate ligand in the dinuclear M-2(L)(2+), M-2(H-1L)(+) and (B)M(H-1L)M(B)(+) complexes, using its N-3 atom and N1-H deprotonated moiety. Stability constants of the complexes provide evidence of discrimination of Cu(II) from the other M(II) ions by this ligand. Solid complexes: [Ni(L)(H2O)(2)] (1), [Cu(L)(H2O)] (2), and [Ni(L)(bipy)] (.) H2O (3) have been isolated and characterized by various physicochemical studies. Single crystal X-ray diffraction of the ternary complex, 3, shows an octahedral [(O-,N,N,O-)(N,N)] geometry with extensive pi-pi stacking of the aromatic rings and H-bonding with imidazole (N1-H), secondary amino N-atom, the lattice H2O molecule, and the carboxylate and phenolate O-atoms. (c) 2006 Elsevier B.V. All rights reserved.