934 resultados para Dye Sensitized Solar Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The successful application of boron-doped hydrogenated nanocrystalline silicon as window layer in a-Si: H nip solar cells on stainless steel foil with a thickness of 0.05 mm is reported. Open circuit voltage and fill factor of the fabricated solar cell were 0.90V and 0.70 respectively. The optical and structural properties of the p-layers have been investigated by using UV-VIS and Raman spectroscopy. It is confirmed that the p-layer is hydrogenated nanocrystalline silicon with a wide optical gap due to quantum size effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMPS (Analysis of microelectronic and photonic structures) mode,which was developed by Pennsylvania State University, has been used to module the light J-V characteristics of a-Si solar cells with a structure of TCO/p-a-SiC:H/i-a-Si:H/n-a-Si:H/ metal. The effects of valence band offset and contact barriers at p/i and TOC/p, n/metal interfaces on the light J-V characteristics have been examined. The modeling has qualitatively categorized and explained the non-ideal J-V behaviors (rollover, crossover, Voc shift,and rollunder) observed in a-Si based solar cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to clarify the major factors having confined the efficiencies of as-prepared crystalline silicon thin film (CSiTF) solar cells on the SSP (silicon sheets from powder) ribbons, QE (quantum efficiency) and Suns-V-oc study were performed on the epitaxial CSiTF solar cells fabricated on the SSP ribbons, the SSP ribbons after surface being zone melting recrystallized (ZMR) and single crystalline silicon (sc-Si) substrates. The results show that the epi-layers deposited on the SSP ribbons have rough surfaces, which not only increases the diffusion reflectance on the surfaces but also makes the anti-reflection coatings become structure-loosened, both of which would deteriorate the light trapping effect; in addition, the epi-layers deposited on the SSP ribbons possess poor crystallographic quality, so the heavy grain boundary (GB) recombination limits the diffusion length of the minority carriers in the epi-layers, which makes the as-prepared CSiTF solar cells suffer the worse spectra response at long-wavelength range. Nearly all the dark characteristic parameters of the CSiTF solar cells are far away from the ideal values. The performances of the CSiTF solar cells are especially affected by too high I-02 (the dark saturation current of space charge region) values and too low R-sh (parallel resistance) values. The higher 102 values are mainly caused by the heavy GB recombination resulting from the poor crystallographic qualities of the silicon active layers in the space charge regions, while the lower R-sh values are attributed to the electrical leakage at the un-passivated PN junction or solar cell edges after the solar cells are cut by the laser scriber.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new type of photovoltaic system with higher generation power density has been studied in detail. The feature of the system is a V-shaped module (VSM) with two tilted monocrystalline solar cells. Compared to solar cells in a flat orientation, the VSM enhances external quantum efficiency and leads to an increase of 31% in power conversion efficiency. Due to the VSM technique, short-circuit current density was raised from 24.94 to 33.7mA/cm(2), but both fill factor and open-circuit voltage were approximately unchanged. For the VSM similar results (about 30% increase) were obtained for solar cells fabricated by using mono-crystal line silicon wafers with only conventional background impurities. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compared to conjugated polymer poly[2-methoxy-5- (3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) solar cells, bulk heterojunction solar cells composed of zinc oxide (ZnO) nanocrystals and MDMO-PPV have a better energy conversion efficiency, However, ultraviolet (UV) light deteriorates the performance of solar cells composed of ZnO and MDMO-PPV. We propose a model to explain the effect of UV illumination on these ZnO:MDMO-PPV solar cells. According to this model, the degradation from UV illumination is due to a decrease of exciton dissociation efficiency, Our model is based on the experimental results such as the measurements of current density versus voltage, photoluminescence, and photocurrent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a detailed study on the effects of carbon incorporation and substrate temperature on structural, optical, and electrical properties of p-type nanocrystalline amorphous silicon films. A p-nc-SiC: H thin film with optical gap of 1.92 eV and activation energy of 0.06 eV is obtained through optimizing the plasma parameters. By using this p-type window layer, single junction diphasic nc-SiC : H/a-Si : H solar cells have been successfully prepared with a V-oc of 0.94 eV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed X-ray photoelectron spectroscopy (XPS) depth profiling measurements were performed across the back n-layer/transparent conducting oxide (n/TCO) inter-faces for superstrate p-i-n solar cells to examine differences between amorphous silicon (a-Si:H) and microcrystalline silicon (mu c-Si:H) n-layer materials as well as TCO materials ZnO and ITO in the chemical, microstructural and diffusion properties of the back interfaces. No chemical reduction of TCO was found for all variations of n-layer/TCO interfaces. We found that n-a-Si:H interfaces better with ITO, while n-mu c-Si:H, with ZnO. A cross-comparison shows that the n-a-Si:H/ITO interface is superior to the n-mu c-Si:H/ZnO interface, as evidenced by the absence of oxygen segregation and less oxidized Si atoms observed near the interface together with much less diffusion of TCO into the n-layer. The results suggest that the n/TCO interface properties are correlated with the characteristics of both the n-layer and the TCO layer. Combined with the results reported on the device performance using similar back n/TCO contacts, we found the overall device performance may depend on both interface and bulk effects related to the back n/TCO contacts. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diphasic silicon films (nc-Si/a-Si:H) have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the nc-Si/a-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. The blue shift for the stretching mode and red shift for the wagging mode in the IR spectra also show the variation of the microstructure. By using this kind of film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51 % and a stabilized efficiency of 8.01% (AM 1.5, 100 mw/cm(2)) at room temperature. (c) 2006 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we use a pulsed rapid thermal processing (RTP) approach to create an emitter layer of hetero-junction solar cell. The process parameters and crystallization behaviour are studied. The structural, optical and electric properties of the crystallized films are also investigated. Both the depth of PN junction and the conductivity of the emitter layer increase with the number of RTP pulses increasing. Simulation results show that efficiencies of such solar cells can exceed 15% with a lower interface recombination rate, but the highest efficiency is 11.65% in our experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intrinsic nanocrystalline silicon films (nc-Si:H) were prepared by plasma enhanced chemical vapor deposition (PECVD) method. Films' microstructures and characteristics were studied with Raman spectroscopy and Atom Force Microscope (AFM). The electronic conductivity of nc-Si:H films was found to be 4.9 x 10(0)Omega(-1) cm(-1), which was one order of magnitude higher than the reported 10(-3)-10(-1)Omega(-1)cm(-1). And PIN solar cells with nc-Si:H film as intrinsic thin-layer (ITO/n(+)-nc-Si:H/i-nc-Si:H/p-c-Si/Ag) were researched. The cell's performances were measured, the open-circuit voltage V-oc was 534.7 mV, short-circuit current I-sc was 49.24 mA (3 cm(2)) and fill factor FF was 0.4228. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The open circuit voltage (V-oc) of n-i-p type hydrogenated amorphous silicon (a-Si:H) solar cells has been examined by means of experimental and numerical modeling. The i- and p-layer limitations on V-oc are separated and the emphasis is to identify the impact of different kinds of p-layers. Hydrogenated protocrystalline, nanocrystalline and microcrystalline silicon p-layers were prepared and characterized using Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), optical transmittance and activation energy of dark-conductivity. The n-i-p a-Si:H solar cells incorporated with these p-layers were comparatively investigated, which demonstrated a wide variation of V-oc from 1.042 V to 0.369 V, under identical i- and n-layer conditions. It is found that the nanocrystalline silicon (nc-Si:H) p-layer with a certain nanocrystalline volume fraction leads to a higher V-oc. The optimum p-layer material for n-i-p type a-Si:H solar cells is not found at the onset of the transition between the amorphous to mixed phases, nor is it associated with a microcrystalline material with a large grain size and a high volume fraction of crystalline phase. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wide bandgap and highly conductive p-type hydrogenated nanocrystalline silicon (nc-Si:H) window layer was prepared with a conventional RF-PECVD system under large H dilution condition, moderate power density, high pressure and low substrate temperature. The optoelectrical and structural properties of this novel material have been investigated by Raman and UV-VIS transmission spectroscopy measurements indicating that these films are composed of nanocrystallites embedded in amorphous SiHx matrix and with a widened bandgap. The observed downshift of the optical phonon Raman spectra (514.4 cm(-1)) from crystalline Si peak (521 cm(-1)) and the widening of the bandgap indicate a quantum confinement effect from the Si nanocrystallites. By using this kind of p-layer, a-Si:H solar cells on bare stainless steel foil in nip sequence have been successfully prepared with a V c of 0.90 V, a fill factor of 0.70 and an efficiency of 9.0%, respectively. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of diphasic nanocrystalline silicon films and solar cells was prepared using different hydrogen dilution ratios of silane by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD). It was observed that after light soaking the open circuit voltage (V-oc) of the diphasic solar cells increased, while that of amorphous silicon solar cells decreased. Raman scattering spectroscopy was performed on the series of diphasic silicon films before and after light soaking. It was found that after light soaking the nanostruclures in the diphasic nanocrystalline silicon films were changed. Both the grain sizes and grain volume fraction reduced, while the grain boundary components increased. These results provide experimental evidence for the conjecture that the light-induced increase in V-oc of the diphasic nanocrystalline solar cells might be induced by the changes in the nanostructure of the intrinsic layer. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogenated nanocrystalline silicon (nc-Si:H) n-layers have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) wafers. The nc-Si:H n-layers were deposited by radio-frequency (RF) plasma enhanced chemical vapor deposition (PECVD), and characterized using Raman spectroscopy, optical transmittance and activation energy of dark-conductivity. The nc-Si:H n-layers obtained comprise fine grained nanocrystallites embedded in amorphous matrix, which have a wider bandgap and a smaller activation energy. Heterojunction solar cells incorporated with the nc-Si n-layer were fabricated using configuration of Ag (100 nm)/1T0 (80 nm)/n-nc-Si:H (15 nm)/buffer a-Si:H/p-c-Si (300 mu m)/Al (200 nm), where a very thin intrinsic a-Si:H buffer layer was used to passivate the p-c-Si surface, followed by a hydrogen plasma treatment prior to the deposition of the thin nanocrystalline layer. The results show that heterojunction solar cells subjected to these surface treatments exhibit a remarkable increase in the efficiency, up to 14.1% on an area of 2.43 cm(2). (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the study on a field-aided collection in p-on-n GaInP2 top cells. The cells were produced by metalorganic vapor phase epitaxy at a low gas pressure. In order to optimize the device configuration, numerical simulations have been performed for the impacts of field-aided collection on the performance of the top cells. On the basis of the modeling results, a modified p(+)-p(-)-n(-)-n(+) configuration is introduced for GaInP2 top cells. This modification has brought out improved photovoltaic performance of the top cells, with conversion efficiency EFF = 14.26% (AM0, 2 x 2 cm(2), 25degreesC). (C) 2003 Elsevier B.V. All rights reserved.