998 resultados para Drag reduction
Resumo:
An investigation was conducted to study the levels of nitrogen fixation on the leaf or sheath surfaces of four cultivars of paddy plants by using acetylene reduction technique. Varying levels of positive nitrogenase activity were observed on all the leaf surfaces. Sheath of IET 1991 cultivar showed a higher rate of fixation than the leaf surface. All the nitrogen-fixing organisms on the leaf or sheath surfaces belonged to the genus Beijerinckia. There was no correlation between the bacterial density and the level of fixation. Scanning electron microscopic data revealed that the upper surface of IET 1991 leaf was highly silicified and the microflora was either scanty or nil while the lower surface appeared quite different and harboured more micro-organisms. Similarly, the inner surface of sheath was devoid of silicification and showed the presence of micro-organisms.
Resumo:
Scheelite-related -Ln2Mo3O12(Ln = La, Pr, Nd, Sm, Gd, Tb, or Dy) oxides are reduced by hydrogen at 780–870 K yielding molybdenum (IV) oxides of formula Ln2Mo3O9. The latter crystallize in a tetragonal scheelite (ABO4) type structure where one third of the A sites and a quarter of the anion sites are vacant: Ln2/3(cat)1/3MoO3(an). The reaction Ln2Mo3O12+ 3H2 Ln2Mo3O9(an)3+ 3H2O may be regarded as topochemically controlled, since both the parent and the product phases have scheelite-related structures. Infrared spectra and electrical and magnetic properties of these metastable defect scheelite phases are reported.
Resumo:
The study investigates the long-run and dynamic relationships between energy consumption and output in Australia using a multivariate cointegration and causality framework. Using both Engle-Granger and Johansen cointegration approaches, the study finds that energy consumption and real Gross Domestic Product are cointegrated. The Granger causality tests suggest bidirectional Granger causality between energy consumption and real GDP, and Granger endogeineity in the system. Since the energy sector largely contributes to carbon emissions in Australia, we suggest that direct measures to reduce carbon by putting constraints on the energy consumption would pose significant economic costs for the Australian economy.
Resumo:
Digital image
Resumo:
Pure thiophosphoryl fluoride has been prepared by the fluorination of thiophosphoryl chloride by sodium fluoride in acetonitrile medium. Oxidation of this phosphoryl fluoride by acidified chloramine-T ruptures the phosphorus-sulphur bond and oxidises the sulphur present to the hexavalent state. Anhydrous hydrogen iodide reduces the sulphur to hydrogen sulphide and phosphorus to the trivalent state.
Resumo:
Abstract is not available.
Resumo:
Finely control of product selectivity is an essential issue in organic chemical production. In the synthesis of functionalized anilines via reduction of the corresponding nitroarenes, the challenge is to selectively reduce only the nitro group in the presence of other reducible functional groups in nitroarene molecules at a high reaction rate. Normally, the nitroarene is reduced stepwise through a series of intermediates that remain as byproducts, increasing the aniline synthesis cost. Here we report that alloying small amounts of copper into gold nanoparticles can alter the reaction pathway of the catalytic reduction under visible-light irradiation at ambient temperature, allowing nitroaromatics to be transformed directly to anilines in a highly selective manner. The reasons for the high efficiency of the photocatalytic reduction under these comparatively benign conditions as well as the light-excited reaction mechanisms are discussed. This photocatalytic process avoids byproducts, exhibits a high reaction rate and excellent substituent tolerance, and can be used for the synthesis of many useful functionalized anilines under environmentally benign conditions. Switching of the reaction pathway simply by tailoring the bimetallic alloy NPs of the photocatalysts is effective for engineering of product chemoselectivity.
Resumo:
Carbon-supported Pt-TiO2 (Pt-TiO2/C) catalysts with varying at. wt ratios of Pt to Ti, namely, 1:1, 2:1, and 3:1, are prepared by the sol-gel method. The electrocatalytic activity of the catalysts toward oxygen reduction reaction (ORR), both in the presence and absence of methanol, is evaluated for application in direct methanol fuel cells (DMFCs). The optimum at. wt ratio of Pt to Ti in Pt-TiO2/C is established by fuel cell polarization, linear sweep voltammetry, and cyclic voltammetry studies. Pt-TiO2/C heattreated at 750 degrees C with Pt and Ti in an at. wt ratio of 2:1 shows enhanced methanol tolerance, while maintaining high catalytic activity toward ORR. The DMFC with a Pt-TiO2/C cathode catalyst exhibits an enhanced peak power density of 180 mW/cm(2) in contrast to the 80 mW/cm(2) achieved from the DMFC with carbon-supported Pt catalyst while operating under identical conditions. Complementary data on the influence of TiO2 on the crystallinity of Pt, surface morphology, and particle size, surface oxidation states of individual constituents, and bulk and surface compositions are also obtained by powder X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive analysis by X-ray, and inductively coupled plasm optical emission spectrometry.
Resumo:
Metal-free CNTs exhibit high activity (conversion rate 99.6%, 6 h) towards the synthesis of chiral hydrobenzoin from benzaldehyde under near-UV light irradiation (320–400 nm). The CNT structure before and after the reaction, the interaction between the molecule and the CNT surface, the intermediate products, the substitution effect and the influence of light on the reaction were examined using various techniques. A photo-excited conduction electron transfer (PECET) mechanism for the photocatalytic reduction using CNTs has been proposed. This finding provides a green photocatalytic route for the production of hydrobenzoin and highlights a potential photocatalytic application of CNTs.
Resumo:
Single pellet experiments have been carried out in a nitrogen atmosphere to study the reduction of hematite by graphite in the temperature range 925 to 1060°C. The effect of variables such as c/Fe2O3 molar ratio, pellet size, and so forth, has been investigated. Gas analysis data show a continuous decrease in CO2/CO ratio during reduction, the values being far away from Fe/FeO equilibrium for wustite reduction by CO. The activation energies associated with different degrees of reduction appear to be widely different suggesting a possible changeover in reaction mechanism during the progress of reduction. X-ray diffraction studies confirm the stepwise nature of hematite reduction.
Resumo:
Energy conversion by living organisms is central dogma of bioenergetics. The effectiveness of the energy extraction by aerobic organisms is much greater than by anaerobic ones. In aerobic organisms the final stage of energy conversion occurs in respiratory chain that is located in the inner membrane of mitochondria or cell membrane of some aerobic bacteria. The terminal complex of the respiratory chain is cytochrome c oxidase (CcO) - the subject of this study. The primary function of CcO is to reduce oxygen to water. For this, CcO accepts electrons from a small soluble enzyme cytochrome c from one side of the membrane and protons from another side. Moreover, CcO translocates protons across the membrane. Both oxygen reduction and proton translocation contributes to generation of transmembrane electrochemical gradient that is used for ATP synthesis and different types of work in the cell. Although the structure of CcO is defined with a relatively high atomic resolution (1.8 Å), its function can hardly be elucidated from the structure. The electron transfer route within CcO and its steps are very well defined. Meanwhile, the proton transfer roots were predicted from the site-specific mutagenesis and later proved by X-ray crystallography, however, the more strong proof of the players of the proton translocation machine is still required. In this work we developed new methods to study CcO function based on FTIR (Fourier Transform Infrared) spectroscopy. Mainly with use of these methods we answered several questions that were controversial for many years: [i] the donor of H+ for dioxygen bond splitting was identified and [ii] the protolytic transitions of Glu-278 one of the key amino acid in proton translocation mechanism was shown for the first time.
Resumo:
The filtrate obtained by interacting a known amount of rice husk with deionised, Milli-Q water was assessed as a carbon source and nutrient medium for the growth of Desulfotomaculum nigrificans, a typical sulfate-reducing bacterium. The filtrate contained essential growth constituents such as magnesium, potassium, phosphorous apart from calcium, sodium, chloride and sulfate ions. Based on the 1H and 13C NMR characterization studies, the organic composition of the components dissolved from the rice husk, was found to be: (i) 66% lignocellulosic material, (ii) 24% xylose + arabinose and (iii) 10% galactose. The growth studies indicated a 15-fold increase in the bacterial cell number in about 20 days. Nearly 81% and 66% reduction in sulfate concentration could be achieved in about 28 days, from the solutions containing initial sulfate concentrations of 550 mg/l and 1200 mg/l respectively. In both the cases studied, the iron concentration could be reduced by over 85%.
Resumo:
Organic-inorganic composite membranes comprising Nation with inorganic materials such as silica, mesoporous zirconium phosphate (MZP) and mesoporous titanium phosphate (MTP) are fabricated and evaluated as proton-exchange-membrane electrolytes for direct methanol fuel cells (DMFCs). For Nation-silica composite membrane, silica is impregnated into Nation matrix as a sol by a novel water hydrolysis process precluding the external use of an acid. Instead, the acidic nature of Nation facilitates in situ polymerization reaction with Nation leading to a uniform composite membrane. The rapid hydrolysis and polymerization reaction while preparing zirconia and titania sols leads to uncontrolled thickness and volume reduction in the composite membranes, and hence is not conducive for casting membranes. Nafion-MZP and Nafion-MTP composite membranes are prepared by mixing pre-formed porous MZP and MTP with Nation matrix. MZP and MTP are synthesised by co-assembly of a tri-block co-polymer, namely pluronic-F127, as a structure-directing agent, and a mixture of zirconium butoxide/titanium isopropoxide and phosphorous trichloride as inorganic precursors. Methanol release kinetics is studied by volume-localized NMR spectroscopy (employing ``point resolved spectroscopy'', PRESS), the results clearly demonstrating that the incorporation of inorganic fillers in Nation retards the methanol release kinetics under osmotic drag. Appreciable proton conductivity with reduced methanol permeability across the composite membranes leads to improved performance of DMFCs in relation to commercially available Nafion-117 membrane.
Resumo:
Electrochemical reduction of hydrogen peroxide is studied on a sand-blasted stainless steel (SSS)electrode in an aqueous solution of NaClO4.The cyclic voltammetric reduction of H2O2 at low concentrations is characterized by a cathodic peak at -0 center dot 40 V versus standard calomel electrode(SCE).Cyclic voltammetry is studied by varying the concentration of H2O2 in the range from 0 center dot 2 mM to 20 mM and the sweep rate in the range from 2 to 100 mV s(-1)Voltammograms at concentrations of H2O2 higher than 2 mM or at high sweep rates consist of an additional current peak, which may be due to the reduction of adsorbed species formed during the reduction of H2O2. Amperometric determination of H2O2 at -0 center dot 50 V vs SCEprovides the detection limit of 5 A mu M H2O2. A plot of current density versus concentration has two segments suggesting a change in the mechanism of H2O2 reduction at concentrations of H2O2 a parts per thousand yen 2 mM. From the rotating disc electrode study, diffusion co-efficient of H2O2 and rate constant for reduction of H2O2 are evaluated.
Resumo:
A chemoselective, neutral, and efficient strategy for the reduction of azides to corresponding amines catalyzed by dioxobis(N,N,-diethyldithiocarbamato) molybdenum complex (1, MoO2[S2CNEt2](2)) in the presence of phenylsilane is discovered. This chemoselective reduction strategy tolerates a variety of reducible functional groups.