868 resultados para Discriminative model training
Resumo:
In Statistical Machine Translation from English to Malayalam, an unseen English sentence is translated into its equivalent Malayalam sentence using statistical models. A parallel corpus of English-Malayalam is used in the training phase. Word to word alignments has to be set among the sentence pairs of the source and target language before subjecting them for training. This paper deals with certain techniques which can be adopted for improving the alignment model of SMT. Methods to incorporate the parts of speech information into the bilingual corpus has resulted in eliminating many of the insignificant alignments. Also identifying the name entities and cognates present in the sentence pairs has proved to be advantageous while setting up the alignments. Presence of Malayalam words with predictable translations has also contributed in reducing the insignificant alignments. Moreover, reduction of the unwanted alignments has brought in better training results. Experiments conducted on a sample corpus have generated reasonably good Malayalam translations and the results are verified with F measure, BLEU and WER evaluation metrics.
Resumo:
The aim of this paper is to analyze the knowledge transfer in the production of structural components of two aircraft:Q400 and Global Express of Bombardier Aerospace Company, Querétaro. Bombardier Aerospace is a pioneer company in the aviation sector in Mexico, and the third largest civil aircraft manufacturer. In 2005, Bombardier decided to invest in Mexico, creating Bombardier Aerospace de Mexico S. A. C. V. and transferring production lines from Japan and Toronto to Queretaro. The relocation strategy of both plants aims to reduce modular and general production costs facing other competitors. The relocation has been supported by the State Government funds, through a trust and the creation of Queretaro aerospace cluster. Among various benefits, the State of Queretaro donated seventy-eight acres of land where the Queretaro International Airport (QIA) and a training centre will be built to promote the development of this sector. The interest in this research is to analyze and describe the transfer of knowledge to the production of structural components of both aircraft models, thanks to the results of productivity and internal and external factors which have contributed along with this transfer
Resumo:
What is the relationship between the type of training combatants receive upon recruitment into an armed group and their propensity to abuse civilians in civil war? Does military training or political training prevent or exacerbate the victimization of civilians by armed non-state actors? While the literature on civilian victimization has expanded rapidly, few studies have examined the correlation between abuse of civilians and the modes of training that illegal armed actors receive. Using a simple formal model, we develop hypotheses regarding this connection and argue that while military training should not decrease the probability that a combatant engages in civilian abuse, political training should. We test these hypotheses using a new survey consisting of a representative sample of approximately 1,500 demobilized combatants from the Colombian conflict, which we match with department-level data on civilian casualties. The empirical analysis confirms our hypotheses about the connection between training and civilian abuse and the results are robust to adding a full set of controls both at the department and at the individual level
Resumo:
L'objectiu d'aquesta tesi doctoral consisteix en determinar si el model de gestió dels recursos humans de les empreses matrius japoneses es transferible a les filials japoneses de Catalunya. Per tot això després d'un estudi teòric sobre la literatura existent del model de gestió dels recursos humans japonès i la internacionalització dels recursos humans, s'ha realitzat un treball empíric mitjançant una enquesta a les filials japoneses instal.lades a Catalunya. En el qüestionari s'analitzen diferents àmbits de la gestió dels recursos humans i que constitueixen les 7 hipòtesis del nostre treball de camp basades en el model de recursos humans japonès referides a: 1- Reclutament i selecció, 2- Promoció i Rotació, 3- Lideratge, comunicació i treball en equip, 4- Motivació, clima laboral i cultura empresrial, 5- Formació i desenvolupament, 6- Avaluació de l'acompliment, y 7- Retribució i beneficis socials. Tot això ens ha indicat quina es la tendència del model japonès de recursos humans a les filials catalanes tenint en compte que estem analitzant un contexte cultural diferent a la idiosincrasia dels treballadors japonesos. El treball ens ha permés de proposar dues línies d'investigació, una a determinar en el temps i una altre en l'espai. En el temps amb la nova generació s'està produint un canvi cultural en el qual els joves japonesos intenten importar part dels valors occidentals que es veurà reflectit al llarg de 10-20 anys. I en l'espai l'aplicació de l'estudi a altres països europeus, com Anglaterra, França i Alemanya que són els principals països on els japonesos prefereixen instal.lar-se.
Resumo:
In the U.K., dental students require to perform training and practice on real human tissues at the very early stage of their courses. Currently, the human tissues, such as decayed teeth, are mounted in a human head like physical model. The problems with these models in teaching are; (1) every student operates on tooth, which are always unique; (2) the process cannot be recorded for examination purposes and (3) same training are not repeatable. The aim of the PHATOM Project is to develop a dental training system using Haptic technology. This paper documents the project background, specification, research and development of the first prototype system. It also discusses the research in the visual display, haptic devices and haptic rendering. This includes stereo vision, motion parallax, volumetric modelling, surface remapping algorithms as well as analysis design of the system. A new volumetric to surface model transformation algorithm is also introduced. This paper includes the future work on the system development and research.
A hierarchical Bayesian model for predicting the functional consequences of amino-acid polymorphisms
Resumo:
Genetic polymorphisms in deoxyribonucleic acid coding regions may have a phenotypic effect on the carrier, e.g. by influencing susceptibility to disease. Detection of deleterious mutations via association studies is hampered by the large number of candidate sites; therefore methods are needed to narrow down the search to the most promising sites. For this, a possible approach is to use structural and sequence-based information of the encoded protein to predict whether a mutation at a particular site is likely to disrupt the functionality of the protein itself. We propose a hierarchical Bayesian multivariate adaptive regression spline (BMARS) model for supervised learning in this context and assess its predictive performance by using data from mutagenesis experiments on lac repressor and lysozyme proteins. In these experiments, about 12 amino-acid substitutions were performed at each native amino-acid position and the effect on protein functionality was assessed. The training data thus consist of repeated observations at each position, which the hierarchical framework is needed to account for. The model is trained on the lac repressor data and tested on the lysozyme mutations and vice versa. In particular, we show that the hierarchical BMARS model, by allowing for the clustered nature of the data, yields lower out-of-sample misclassification rates compared with both a BMARS and a frequen-tist MARS model, a support vector machine classifier and an optimally pruned classification tree.
Resumo:
The emergent requirements for effective e-learning calls for a paradigm shift for instructional design. Constructivist theory and semiotics offer a sound underpinning to enable such revolutionary change by employing the concepts of Learning Objects. E-learning guidelines adopted by the industry have led successfully to the development of training materials. Inadequacy and deficiency of those methods for Higher Education have been identified in this paper. Based on the best practice in industry and our empirical research, we present an instructional design model with practical templates for constructivist learning.
Resumo:
This paper introduces a new neurofuzzy model construction and parameter estimation algorithm from observed finite data sets, based on a Takagi and Sugeno (T-S) inference mechanism and a new extended Gram-Schmidt orthogonal decomposition algorithm, for the modeling of a priori unknown dynamical systems in the form of a set of fuzzy rules. The first contribution of the paper is the introduction of a one to one mapping between a fuzzy rule-base and a model matrix feature subspace using the T-S inference mechanism. This link enables the numerical properties associated with a rule-based matrix subspace, the relationships amongst these matrix subspaces, and the correlation between the output vector and a rule-base matrix subspace, to be investigated and extracted as rule-based knowledge to enhance model transparency. The matrix subspace spanned by a fuzzy rule is initially derived as the input regression matrix multiplied by a weighting matrix that consists of the corresponding fuzzy membership functions over the training data set. Model transparency is explored by the derivation of an equivalence between an A-optimality experimental design criterion of the weighting matrix and the average model output sensitivity to the fuzzy rule, so that rule-bases can be effectively measured by their identifiability via the A-optimality experimental design criterion. The A-optimality experimental design criterion of the weighting matrices of fuzzy rules is used to construct an initial model rule-base. An extended Gram-Schmidt algorithm is then developed to estimate the parameter vector for each rule. This new algorithm decomposes the model rule-bases via an orthogonal subspace decomposition approach, so as to enhance model transparency with the capability of interpreting the derived rule-base energy level. This new approach is computationally simpler than the conventional Gram-Schmidt algorithm for resolving high dimensional regression problems, whereby it is computationally desirable to decompose complex models into a few submodels rather than a single model with large number of input variables and the associated curse of dimensionality problem. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.
Resumo:
A fundamental principle in practical nonlinear data modeling is the parsimonious principle of constructing the minimal model that explains the training data well. Leave-one-out (LOO) cross validation is often used to estimate generalization errors by choosing amongst different network architectures (M. Stone, "Cross validatory choice and assessment of statistical predictions", J. R. Stast. Soc., Ser. B, 36, pp. 117-147, 1974). Based upon the minimization of LOO criteria of either the mean squares of LOO errors or the LOO misclassification rate respectively, we present two backward elimination algorithms as model post-processing procedures for regression and classification problems. The proposed backward elimination procedures exploit an orthogonalization procedure to enable the orthogonality between the subspace as spanned by the pruned model and the deleted regressor. Subsequently, it is shown that the LOO criteria used in both algorithms can be calculated via some analytic recursive formula, as derived in this contribution, without actually splitting the estimation data set so as to reduce computational expense. Compared to most other model construction methods, the proposed algorithms are advantageous in several aspects; (i) There are no tuning parameters to be optimized through an extra validation data set; (ii) The procedure is fully automatic without an additional stopping criteria; and (iii) The model structure selection is directly based on model generalization performance. The illustrative examples on regression and classification are used to demonstrate that the proposed algorithms are viable post-processing methods to prune a model to gain extra sparsity and improved generalization.
Resumo:
This paper illustrates how internal model control of nonlinear processes can be achieved by recurrent neural networks, e.g. fully connected Hopfield networks. It is shown that using results developed by Kambhampati et al. (1995), that once a recurrent network model of a nonlinear system has been produced, a controller can be produced which consists of the network comprising the inverse of the model and a filter. Thus, the network providing control for the nonlinear system does not require any training after it has been trained to model the nonlinear system. Stability and other issues of importance for nonlinear control systems are also discussed.
Resumo:
The development of an Artificial Neural Network model of UK domestic appliance energy consumption is presented. The model uses diary-style appliance use data and a survey questionnaire collected from 51 households during the summer of 2010. It also incorporates measured energy data and is sensitive to socioeconomic, physical dwelling and temperature variables. A prototype model is constructed in MATLAB using a two layer feed forward network with backpropagation training and has a12:10:24architecture.Model outputs include appliance load profiles which can be applied to the fields of energy planning (micro renewables and smart grids), building simulation tools and energy policy.
Resumo:
The development of a combined engineering and statistical Artificial Neural Network model of UK domestic appliance load profiles is presented. The model uses diary-style appliance use data and a survey questionnaire collected from 51 suburban households and 46 rural households during the summer of 2010 and2011 respectively. It also incorporates measured energy data and is sensitive to socioeconomic, physical dwelling and temperature variables. A prototype model is constructed in MATLAB using a two layer feed forward network with back propagation training which has a 12:10:24 architecture. Model outputs include appliance load profiles which can be applied to the fields of energy planning (microrenewables and smart grids), building simulation tools and energy policy.
Resumo:
The Plaut, McClelland, Seidenberg and Patterson (1996) connectionist model of reading was evaluated at two points early in its training against reading data collected from British children on two occasions during their first year of literacy instruction. First, the network’s non-word reading was poor relative to word reading when compared with the children. Second, the network made more non-lexical than lexical errors, the opposite pattern to the children. Three adaptations were made to the training of the network to bring it closer to the learning environment of a child: an incremental training regime was adopted; the network was trained on grapheme– phoneme correspondences; and a training corpus based on words found in children’s early reading materials was used. The modifications caused a sharp improvement in non-word reading, relative to word reading, resulting in a near perfect match to the children’s data on this measure. The modified network, however, continued to make predominantly non-lexical errors, although evidence from a small-scale implementation of the full triangle framework suggests that this limitation stems from the lack of a semantic pathway. Taken together, these results suggest that, when properly trained, connectionist models of word reading can offer insights into key aspects of reading development in children.
Resumo:
BACKGROUND: Using continuing professional development (CPD) as part of the revalidation of pharmacy professionals has been proposed in the UK but not implemented. We developed a CPD Outcomes Framework (‘the framework’) for scoring CPD records, where the score range was -100 to +150 based on demonstrable relevance and impact of the CPD on practice. OBJECTIVE: This exploratory study aimed to test the outcome of training people to use the framework, through distance-learning material (active intervention), by comparing CPD scores before and after training. SETTING: Pharmacy professionals were recruited in the UK in Reading, Banbury, Southampton, Kingston-upon-Thames and Guildford in 2009. METHOD: We conducted a randomised, double-blinded, parallel-group, before and after study. The control group simply received information on new CPD requirements through the post; the active intervention group also received the framework and associated training. Altogether 48 participants (25 control, 23 active) completed the study. All participants submitted CPD records to the research team before and after receiving the posted resources. The records (n=226) were scored blindly by the researchers using the framework. A subgroup of CPD records (n=96) submitted first (before-stage) and rewritten (after-stage) were analysed separately. MAIN OUTCOME MEASURE: Scores for CPD records received before and after distributing group-dependent material through the post. RESULTS: Using a linear-regression model both analyses found an increase in CPD scores in favour of the active intervention group. For the complete set of records, the effect was a mean difference of 9.9 (95% CI = 0.4 to 19.3), p-value = 0.04. For the subgroup of rewritten records, the effect was a mean difference of 17.3 (95% CI = 5.6 to 28.9), p-value = 0.0048. CONCLUSION: The intervention improved participants’ CPD behaviour. Training pharmacy professionals to use the framework resulted in better CPD activities and CPD records, potentially helpful for revalidation of pharmacy professionals. IMPACT: • Using a bespoke Continuing Professional Development outcomes framework improves the value of pharmacy professionals’ CPD activities and CPD records, with the potential to improve patient care. • The CPD outcomes framework could be helpful to pharmacy professionals internationally who want to improve the quality of their CPD activities and CPD records. • Regulators and officials across Europe and beyond can assess the suitability of the CPD outcomes framework for use in pharmacy CPD and revalidation in their own setting.
Resumo:
The present study investigated the effects of exercise training on arterial pressure, baroreflex sensitivity, cardiovascular autonomic control and metabolic parameters on female LDL-receptor knockout ovariectomized mice. Mice were divided into two groups: sedentary and trained. Trained group was submitted to an exercise training protocol. Blood cholesterol was measured. Arterial pressure (AP) signals were directly recorded in conscious mice. Baroreflex sensitivity was evaluated by tachycardic and bradycardic responses to AP changes. Cardiovascular autonomic modulation was measured in frequency (FFT) and time domains. Maximal exercise capacity was increased in trained as compared to sedentary group. Blood cholesterol was diminished in trained mice (191 +/- 8 mg/dL) when compared to sedentary mice (250 +/- 9 mg/dL, p<0.05). Mean AP and HR were reduced in trained group (101 +/- 3 mmHg and 535 +/- 14 bpm, p<0.05) when compared with sedentary group (125 +/- 3 mmHg and 600 +/- 12 bpm). Exercise training induced improvement in bradycardic reflex response in trained animals (-4.24 +/- 0.62 bpm/mmHg) in relation to sedentary animals (-1.49 +/- 0.15 bpm/mmHg, p<0.01); tachycardic reflex responses were similar between studied groups. Exercise training increased the variance (34 +/- 8 vs. 6.6 +/- 1.5 ms(2) in sedentary, p<0.005) and the high-frequency band (HF) of the pulse interval (IP) (53 +/- 7% vs. 26 +/- 6% in sedentary, p<0.01). It is tempting to speculate that results of this experimental study might represent a rationale for this non-pharmacological intervention in the management of cardiovascular risk factors in dyslipidemic post-menopause women. (C) 2009 Elsevier Ireland Ltd. All rights reserved.