985 resultados para Convex Operator
Resumo:
A bipartite graph G = (V, W, E) is convex if there exists an ordering of the vertices of W such that, for each v. V, the neighbors of v are consecutive in W. We describe both a sequential and a BSP/CGM algorithm to find a maximum independent set in a convex bipartite graph. The sequential algorithm improves over the running time of the previously known algorithm and the BSP/CGM algorithm is a parallel version of the sequential one. The complexity of the algorithms does not depend on |W|.
Resumo:
In this paper, we prove that if a Banach space X contains some uniformly convex subspace in certain geometric position, then the C(K, X) spaces of all X-valued continuous functions defined on the compact metric spaces K have exactly the same isomorphism classes that the C(K) spaces. This provides a vector-valued extension of classical results of Bessaga and Pelczynski (1960) [2] and Milutin (1966) [13] on the isomorphic classification of the separable C(K) spaces. As a consequence, we show that if 1 < p < q < infinity then for every infinite countable compact metric spaces K(1), K(2), K(3) and K(4) are equivalent: (a) C(K(1), l(p)) circle plus C(K(2), l(q)) is isomorphic to C(K(3), l(p)) circle plus (K(4), l(q)). (b) C(K(1)) is isomorphic to C(K(3)) and C(K(2)) is isomorphic to C(K(4)). (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In this work we show that the eigenvalues of the Dirichlet problem for the biharmonic operator are generically simple in the set Of Z(2)-symmetric regions of R-n, n >= 2, with a suitable topology. To accomplish this, we combine Baire`s lemma, a generalised version of the transversality theorem, due to Henry [Perturbation of the boundary in boundary value problems of PDEs, London Mathematical Society Lecture Note Series 318 (Cambridge University Press, 2005)], and the method of rapidly oscillating functions developed in [A. L. Pereira and M. C. Pereira, Mat. Contemp. 27 (2004) 225-241].
Resumo:
BACKGROUND AND OBJECTIVE: To a large extent, people who have suffered a stroke report unmet needs for rehabilitation. The purpose of this study was to explore aspects of rehabilitation provision that potentially contribute to self-reported met needs for rehabilitation 12 months after stroke with consideration also to severity of stroke. METHODS: The participants (n = 173) received care at the stroke units at the Karolinska University Hospital, Sweden. Using a questionnaire, the dependent variable, self-reported met needs for rehabilitation, was collected at 12 months after stroke. The independent variables were four aspects of rehabilitation provision based on data retrieved from registers and structured according to four aspects: amount of rehabilitation, service level (day care rehabilitation, primary care rehabilitation and home-based rehabilitation), operator level (physiotherapist, occupational therapist, speech therapist) and time after stroke onset. Multivariate logistic regression analyses regarding the aspects of rehabilitation were performed for the participants who were divided into three groups based on stroke severity at onset. RESULTS: Participants with moderate/severe stroke who had seen a physiotherapist at least once during each of the 1st, 2nd and 3rd-4th quarters of the first year (OR 8.36, CI 1.40-49.88 P = 0.020) were more likely to report met rehabilitation needs. CONCLUSION: For people with moderate/severe stroke, continuity in rehabilitation (preferably physiotherapy) during the first year after stroke seems to be associated with self-reported met needs for rehabilitation.
Resumo:
The demands of image processing related systems are robustness, high recognition rates, capability to handle incomplete digital information, and magnanimous flexibility in capturing shape of an object in an image. It is exactly here that, the role of convex hulls comes to play. The objective of this paper is twofold. First, we summarize the state of the art in computational convex hull development for researchers interested in using convex hull image processing to build their intuition, or generate nontrivial models. Secondly, we present several applications involving convex hulls in image processing related tasks. By this, we have striven to show researchers the rich and varied set of applications they can contribute to. This paper also makes a humble effort to enthuse prospective researchers in this area. We hope that the resulting awareness will result in new advances for specific image recognition applications.
A New Representation And Crossover Operator For Search-based Optimization Of Software Modularization
A New Representation And Crossover Operator For Search-based Optimization Of Software Modularization
Resumo:
Convex combinations of long memory estimates using the same data observed at different sampling rates can decrease the standard deviation of the estimates, at the cost of inducing a slight bias. The convex combination of such estimates requires a preliminary correction for the bias observed at lower sampling rates, reported by Souza and Smith (2002). Through Monte Carlo simulations, we investigate the bias and the standard deviation of the combined estimates, as well as the root mean squared error (RMSE), which takes both into account. While comparing the results of standard methods and their combined versions, the latter achieve lower RMSE, for the two semi-parametric estimators under study (by about 30% on average for ARFIMA(0,d,0) series).
Resumo:
In this paper I will investigate the conditions under which a convex capacity (or a non-additive probability which exhibts uncertainty aversion) can be represented as a squeeze of a(n) (additive) probability measure associate to an uncertainty aversion function. Then I will present two alternatives forrnulations of the Choquet integral (and I will extend these forrnulations to the Choquet expected utility) in a parametric approach that will enable me to do comparative static exercises over the uncertainty aversion function in an easy way.
Resumo:
We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the almost sure convergence of these decomposition methods when the relatively complete recourse assumption holds. We also prove the almost sure convergence of these algorithms when applied to risk-averse multistage stochastic linear programs that do not satisfy the relatively complete recourse assumption. The analysis is first done assuming the underlying stochastic process is interstage independent and discrete, with a finite set of possible realizations at each stage. We then indicate two ways of extending the methods and convergence analysis to the case when the process is interstage dependent.
Resumo:
We consider risk-averse convex stochastic programs expressed in terms of extended polyhedral risk measures. We derive computable con dence intervals on the optimal value of such stochastic programs using the Robust Stochastic Approximation and the Stochastic Mirror Descent (SMD) algorithms. When the objective functions are uniformly convex, we also propose a multistep extension of the Stochastic Mirror Descent algorithm and obtain con dence intervals on both the optimal values and optimal solutions. Numerical simulations show that our con dence intervals are much less conservative and are quicker to compute than previously obtained con dence intervals for SMD and that the multistep Stochastic Mirror Descent algorithm can obtain a good approximate solution much quicker than its nonmultistep counterpart. Our con dence intervals are also more reliable than asymptotic con dence intervals when the sample size is not much larger than the problem size.
Resumo:
A new device was developed to hold linear transducers for transvaginal follicle aspiration. Efficacy of follicle aspiration was compared using a linear 6 MHz and a convex 5 MHz transducer. Fifty-five cows were submitted to follicle aspiration at random days of the estrous cycle. Aspirations were conducted with linear (n = 28) and convex (n = 38) transducers with 18 G needles at a negative pressure corresponding to 13 ml H2O/min. A greater number of follicles were aspirated using convex than to linear probe (12.4 versus 7.8, respectively, P < 0.05). Mean number of oocytes and recovery rates were similar for convex (5.4 and 48.6%) and linear (4.6 and 59.3%) transducers. Limited space between the linear transducer and needle guide restricted access to some portions of the ovary, reducing the number of follicles aspirated using a linear transducer. The newly developed adaptor allowed greater stability, holding the ovaries firmly against the linear transducer. This diminished mobility permitted a similar number of oocytes to be recovered with both transducers. In conclusion, this new adaptor provided a low cost alternative for routine follicle aspiration and oocyte recovery in cattle. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
Image restoration attempts to enhance images corrupted by noise and blurring effects. Iterative approaches can better control the restoration algorithm in order to find a compromise of restoring high details in smoothed regions without increasing the noise. Techniques based on Projections Onto Convex Sets (POCS) have been extensively used in the context of image restoration by projecting the solution onto hyperspaces until some convergence criteria be reached. It is expected that an enhanced image can be obtained at the final of an unknown number of projections. The number of convex sets and its combinations allow designing several image restoration algorithms based on POCS. Here, we address two convex sets: Row-Action Projections (RAP) and Limited Amplitude (LA). Although RAP and LA have already been used in image restoration domain, the former has a relaxation parameter (A) that strongly depends on the characteristics of the image that will be restored, i.e., wrong values of A can lead to poorly restoration results. In this paper, we proposed a hybrid Particle Swarm Optimization (PS0)-POCS image restoration algorithm, in which the A value is obtained by PSO to be further used to restore images by POCS approach. Results showed that the proposed PSO-based restoration algorithm outperformed the widely used Wiener and Richardson-Lucy image restoration algorithms. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this Letter, an entropy operator for the general unitary SU(1, 1) TFD formulation is proposed and used to lead a bosonic system from zero to finite temperature. Namely, considering the closed bosonic string as the target system, the entropy operator is used to construct the thermal vacuum. The behaviour of such a state under the breve conjugation rules is analyzed and it was shown that the breve conjugation does not affect the thermal effects. From this thermal vacuum the thermal energy, the entropy and the free energy of the closed bosonic string are calculated and the appropriated thermal distribution for the system is found after the free energy minimization. (C) 2004 Elsevier B.V. All rights reserved.