999 resultados para CERIUM MONOCHALCOGENIDES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kinetics and the thermodynamics of electrochemical intercalation of lithium into CeO(2)-TiO(2) films prepared by the sol-gel process were studied by galvanostatic intermittent titration technique (GITT) as function of the depth of lithium intercalation. The open-circuit-potential versus x in Li(x)(CeO(2)-TiO(2)) curve consists of two straight lines with different slopes, one in the range of 0.03 <= x <= 0.09 and the other of 0.09 < x <= 0.15. The standard Gibbs energy for lithium intercalation Delta G(1)(0) was 6kJ/mol for x = 0.09 in Li(x)(CeO(2)-TiO(2)) at room temperature. The chemical diffusion coefficient value, D(Li+), of lithium intercalation into thin film oxide was 2.14.10(-11) cm(2)/s at x = 0.15, and the value of the component diffusion coefficient D(Li+),(k) was about one order of magnitude lower than the coefficient of chemical diffusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The submerged entry nozzle (SEN) is used to transport the molten steel from a tundish to a mould. The main purpose of its usage is to prevent oxygen and nitrogen pick-up by molten steel from the gas. Furthermore, to achieve the desired flow conditions in the mould. Therefore, the SEN can be considered as a vital factor for a stable casting process and the steel quality. In addition, the steelmaking processes occur at high temperatures around 1873 K, so the interaction between the refractory materials of the SEN and molten steel is unavoidable. Therefore, the knowledge of the SEN behaviors during preheating and casting processes is necessary for the design of the steelmaking processes  The internal surfaces of modern SENs are coated with a glass/silicon powder layer to prevent the SEN graphite oxidation during preheating. The effects of the interaction between the coating layer and the SEN base refractory materials on clogging were studied. A large number of accretion samples formed inside alumina-graphite clogged SENs were examined using FEG-SEM-EDS and Feature analysis. The internal coated SENs were used for continuous casting of stainless steel grades alloyed with Rare Earth Metals (REM). The post-mortem study results clearly revealed the formation of a multi-layer accretion. A harmful effect of the SENs decarburization on the accretion thickness was also indicated. In addition, the results indicated a penetration of the formed alkaline-rich glaze into the alumina-graphite base refractory. More specifically, the alkaline-rich glaze reacts with graphite to form a carbon monoxide gas. Thereafter, dissociation of CO at the interface between SEN and molten metal takes place. This leads to reoxidation of dissolved alloying elements such as REM (Rare Earth Metal). This reoxidation forms the “In Situ” REM oxides at the interface between the SEN and the REM alloyed molten steel. Also, the interaction of the penetrated glaze with alumina in the SEN base refractory materials leads to the formation of a high-viscous alumina-rich glaze during the SEN preheating process. This, in turn, creates a very uneven surface at the SEN internal surface. Furthermore, these uneven areas react with dissolved REM in molten steel to form REM aluminates, REM silicates and REM alumina-silicates. The formation of the large “in-situ” REM oxides and the reaction of the REM alloying elements with the previously mentioned SEN´s uneven areas may provide a large REM-rich surface in contact with the primary inclusions in molten steel. This may facilitate the attraction and agglomeration of the primary REM oxide inclusions on the SEN internal surface and thereafter the clogging. The study revealed the disadvantages of the glass/silicon powder coating applications and the SEN decarburization. The decarburization behaviors of Al2O3-C, ZrO2-C and MgO-C refractory materials from a commercial Submerged Entry Nozzle (SEN), were also investigated for different gas atmospheres consisting of CO2, O2 and Ar. The gas ratio values were kept the same as it is in a propane combustion flue gas at different Air-Fuel-Ratio (AFR) values for both Air-Fuel and Oxygen-Fuel combustion systems. Laboratory experiments were carried out under nonisothermal conditions followed by isothermal heating. The decarburization ratio (α) values of all three refractory types were determined by measuring the real time weight losses of the samples. The results showed the higher decarburization ratio (α) values increasing for MgO-C refractory when changing the Air-Fuel combustion to Oxygen-Fuel combustion at the same AFR value. It substantiates the SEN preheating advantage at higher temperatures for shorter holding times compared to heating at lower temperatures during longer holding times for Al2O3-C samples. Diffusion models were proposed for estimation of the decarburization rate of an Al2O3-C refractory in the SEN. Two different methods were studied to prevent the SEN decarburization during preheating: The effect of an ZrSi2 antioxidant and the coexistence of an antioxidant additive and a (4B2O3 ·BaO) glass powder on carbon oxidation for non-isothermal and isothermal heating conditions in a controlled atmosphere. The coexistence of 8 wt% ZrSi2 and 15 wt% (4B2O3 ·BaO) glass powder of the total alumina-graphite refractory base materials, presented the most effective resistance to carbon oxidation. The 121% volume expansion due to the Zircon formation during heating and filling up the open pores by a (4B2O3 ·BaO) glaze during the green body sintering led to an excellent carbon oxidation resistance. The effects of the plasma spray-PVD coating of the Yttria Stabilized Zirconia (YSZ) powder on the carbon oxidation of the Al2O3-C coated samples were investigated. Trials were performed at non-isothermal heating conditions in a controlled atmosphere. Also, the applied temperature profile for the laboratory trials were defined based on the industrial preheating trials. The controlled atmospheres consisted of CO2, O2 and Ar. The thicknesses of the decarburized layers were measured and examined using light optic microscopy, FEG-SEM and EDS. A 250-290 μm YSZ coating is suggested to be an appropriate coating, as it provides both an even surface as well as prevention of the decarburization even during heating in air. In addition, the interactions between the YSZ coated alumina-graphite refractory base materials in contact with a cerium alloyed molten stainless steel were surveyed. The YSZ coating provided a total prevention of the alumina reduction by cerium. Therefore, the prevention of the first clogging product formed on the surface of the SEN refractory base materials. Therefore, the YSZ plasma-PVD coating can be recommended for coating of the hot surface of the commercial SENs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mixtures of silver(I) and citrate that are used to produce silver nanoparticles evoke intense chemiluminescence with tris(2,2'-bipyridyl)ruthenium(II) and cerium(IV), which can be exploited for the determination of citrate ions and other analytes over a wide concentration range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation into the chemiluminescence of fourteen organic acids and tris(2,2′-bipyridyl)ruthenium(II) was undertaken. Particular emphasis was placed upon the method of production of the reagent, tris(2,2′-bipyridyl)ruthenium(III), with cerium(IV) sulfate, potassium permanganate, lead dioxide and electrochemical generation. Analytically useful chemiluminescence was observed when Ce(IV) or potassium permanganate were employed as oxidants. The kinetics of analyte oxidation was related to the intensity of the chemiluminescence emission, which increased by three orders of magnitude for tartaric acid after 40 h of oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of ultrafine cerium dioxide (CeO2) powders via mechanochemical reaction and subsequent calcination was studied. Anhydrous CeCl3 and NaOH powders, along with NaCl diluent, were mechanically milled. A solid-state displacement reaction—CeCl3+ 3NaOH → Ce(OH)3+ 3NaCl—was induced during milling in a steady-state manner. Calcination of the as-milled powder in air at 500°C resulted in the formation of CeO2 nanoparticles in the NaCl matrix. A simple washing process to remove the NaCl yielded CeO2 particles ∼10 nm in size. The particle size was controlled in the range of ∼10–500 nm by changing the calcination temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical reactions between certain bis-cyclometalated iridium complexes, cerium(IV) and organic reducing agents in aqueous solution produce an emission of light which in some cases is more intense than that from analogous reactions with conventional ruthenium-based reagents, thus providing a new avenue for chemically-initiated luminescence detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reaction of CeCl3·7H2O with Na2(oda) (oda = O(CH2CO2)22— oxydiacetate) in a 2:3 ratio gives the neutral cerium(III) complex [Ce2(oda)3(H2O)3]·9H2O (1). Treatment of a 1:3 mixture of CeCl3·7H2O and H2oda in water with 4 molar equivalents of NaOH also gives 1 but, with a larger excess of NaOH, the tri-sodium salt Na3[Ce(oda)3]·9H2O (2) is isolated. Formation of a tri-ammonium analogue of 2 can be achieved by neutralisation of an aqueous solution of CeCl3·7H2O and H2(oda) in a 1:3 ratio by NH4OH, giving (NH4)3[Ce(oda)3]·7H2O (3). Use of the cerium(IV) reagent (NH4)2[Ce(NO3)6] with Na2(oda) results in reduction to cerium(III) under ambient conditions and isolation of 1. However, in the absence of light this reaction yields crystals of the novel cerium(IV) heterobimetallic [Ce(oda)3Na4(NO3)2] (4). Each of these complexes exhibit a 3-D network structure having a common nine-coordinate [Ce(oda)3]n— (n = 2 or 3) subunit, irrespective of the oxidation state of cerium. In 1, six [Ce(oda)3]3— anions are connected, through bridging bidentate carboxylates, to a second Ce3+ site further coordinated by three water molecules. In contrast, the ammonium salt 2, displays isolated [Ce(oda)3]3— anions, devoid of further carboxylate bonding, but enmeshed within a network of hydrogen-bonded NH4+ cations and water molecules. The remarkable structure of 4 consists of infinite 2-D sheets of [Na2(NO3)]+ pillared by [Ce(oda)3]2— units, the connectivity arising by multidentate nitrate and carboxylate bridging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corrosion rate measurements based on weight loss (i.e., mild steel immersed for seven days in 0.01 M NaCl) and linear polarization resistance (LPR) techniques have shown that even low concentrations (200 ppm) of cerium and lanthanum cinnamates are able to significantly inhibit corrosion. Of all the compounds investigated in this work Ce(4-methoxycinnamate)3· 2 H2O and La(4-methoxycinnamate)3· 2 H2O compounds exhibited the greatest inhibition and, in comparison with the component inhibitors, a synergy was clearly observed. The mechanism of corrosion inhibition was investigated using cyclic potentiodynamic polarization (CPP) measurements. The results suggest that La(4-nitrocinnamate)3· 2 H2O and Ce(4-methoxycinnamate)3· 2 H2O behave as mixed inhibitors and improve the resistance of steel against localized attack.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A central μ3—O moiety linking two FeIII and one CeIII sites supported by two distinct heterometallic carboxylate bridging modes features in self-assembled [CeFe2(bpy)23—O)(μ—L)2(μ—LH)2(LH)(H2O)2]·0.5(bpy)·7H2O (1) (LH2 = glycolic acid), and the structure models potential bonding modes of the Rare Earth corrosion inhibitor Ce(glycolate)3 to iron or iron oxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preparations and characterisations of a range of lanthanoid 4-(R)-substituted (4-Rcinn, R = OH, OMe, NO2, Cl), known to have good anticorrosion properties, are reported. The crystal structure of [Ce(4-OHcinn)3(MeOH)2(H2O)]·MeOH is a polymer, in which the cerium atoms are nonacoordinate, and adjacent cerium atoms are bridged by either two bridging bidentate or two bridging tridentate carboxylate ligands. Each cerium atom also has one monodentate 4-hydroxycinnamate ligand, one aqua ligand, and two methanol ligands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Existing corrosion protection technologies for aluminium alloys utilising chromates are environmentally damaging and extremely toxic. This paper presents a preliminary investigation into rare earth diphenyl phosphates as new environmentally benign corrosion inhibitors. Full immersion weight loss experiments, cyclic potentiodynamic polarisation measurements and Raman spectroscopy were used in this study. Results show cerium diphenyl phosphate (Ce(dpp)3) acts as a cathodic inhibitor, decreasing cathodic current density and Ecorr by passivating cathodic intermetallic particles on the alloy surface. Mischmetal diphenyl phosphate (Mm(dpp)3) acts a mixed inhibitor, shifting Ecorr to more noble values, decreasing cathodic current density, increasing the breakdown potential and suppressing pitting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mixed rare-earth organophosphates have been investigated as potential corrosion inhibitors for AA2024-T3, and previously have shown synergistic inhibition behavior; however, the mechanism was not identified. In this paper, a key factor contributing to corrosion inhibition of AA2024-T3 with mischmetal diphenyl phosphate [Mm(dpp)3] is the unique stability of Pr(dpp)3 compared to other key rare earths in mischmetal. Although increasing pH causes precipitation of other components, the Pr compound is stable at higher pH. Electrochemically, a synergy is evident when Ce(dpp)3 and Pr(dpp)3 are combined. Raman mapping indicates the Pr(dpp)3 inhibitor leads to a more uniform coverage of the alloy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The data examines the design of magnesium alloys for improved ductility by the edition of rare earth elements. These elements, such as cerium and gadolinium modify the texture of wrought products and also refine the grain size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction of a fluorinated iridium complex with cerium(IV) and organic reducing agents generates an intense emission with a significant hypsochromic shift compared to contemporary chemically-initiated luminescence from metal complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mixed rare earth organophosphates have been investigated as potential corrosion inhibitors for AA2024-T3 with the aim of replacing chromate-based technologies. Cerium diphenyl phosphate (Ce(dpp) 3) and mischmetal diphenyl phosphate (Mm(dpp) 3) were added to epoxy coatings applied to AA2024-T3 panels and they were effective in reducing the amount and rate of filiform corrosion in high humidity conditions. Ce(dpp) 3 was the most effective and characterisation of the coating formulations showed approximately a factor of 5 reduction in both the number of corrosion filaments initiated as well as the length of these. Mm(dpp) 3 appeared to reduce the corrosion growth rate by a factor of 2 although it was the more effective inhibitor in solution studies. Spectroscopic characterisation of the coatings indicated that the cerium based inhibitor may disrupt network formation in the epoxy thus resulting in a coating that absorbed more water and allowed greater solubilisation of the corrosion inhibiting compound.