978 resultados para B-spline functions
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Elderly individuals with AD are more susceptible to falls, which might be associated with decrements in their executive functions and balance, among other things. We aimed to analyze the effects of a program of dual task physical activity on falls, executive functions and balance of elderly individuals with AD. We studied 21 elderly with probable AD, allocated to two groups: the training group (TG), with 10 elderly who participated in a program of dual task physical activity; and the control group (CG), with 11 elderly who were not engaged in regular practice of physical activity. The Clock Drawing Test (CDT) and the Frontal Assessment Battery (FAB) were used in the assessment of the executive functions, while the Berg Balance Scale (BBS) and the Timed Up-and-Go (TUG)-test evaluated balance. The number of falls was obtained by means of a questionnaire. We observed a better performance of the TG as regards balance and executive functions. Moreover, the lower the number of steps in the TUG scale, the higher the scores in the CDT, and in the FAB. The practice of regular physical activity with dual task seems to have contributed to the maintenance and improvement of the motor and cognitive functions of the elderly with AD. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The decline in frontal cognitive functions contributes to alterations of gait and increases the risk of falls in patients with dementia, a category which included Alzheimer's disease (AD). The objective of the present study was to compare the gait parameters and the risk of falls among patients at different stages of AD, and to relate these variables with cognitive functions. This is a cross-sectional study with 23 patients with mild and moderate AD. The Clinical Dementia Rating was used to classify the dementia severity. The kinematic parameters of gait (cadence, stride length, and stride speed) were analyzed under two conditions: (a) single task (free gait) and (b) dual task (walking and counting down). The risk of falls was evaluated using the Timed Up-and-Go test. The frontal cognitive functions were evaluated using the Frontal Assessment Battery (FAB), the Clock Drawing Test (CDT) and the Symbol Search Subtest. The patients who were at the moderate stage suffered reduced performance in their stride length and stride speed in the single task and had made more counting errors in the dual task and still had a higher fall risk. Both the mild and the moderate patients exhibited significant decreases in stride length, stride speed and cadence in the dual task. Was detected a significant correlation between CDT, FAB, and stride speed in the dual task condition. We also found a significant correlation between subtest Similarities, FAB and cadence in the dual task condition. The dual task produced changes in the kinematic parameters of gait for the mild and moderate AD patients and the gait alterations are related to frontal cognitive functions, particularly executive functions.
Resumo:
The number of zeros in (- 1, 1) of the Jacobi function of second kind Q(n)((alpha, beta)) (x), alpha, beta > - 1, i.e. The second solution of the differential equation(1 - x(2))y (x) + (beta - alpha - (alpha + beta + 2)x)y' (x) + n(n + alpha + beta + 1)y(x) = 0,is determined for every n is an element of N and for all values of the parameters alpha > - 1 and beta > - 1. It turns out that this number depends essentially on alpha and beta as well as on the specific normalization of the function Q(n)((alpha, beta)) (x). Interlacing properties of the zeros are also obtained. As a consequence of the main result, we determine the number of zeros of Laguerre's and Hermite's functions of second kind. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We prove that the only Jensen polynomials associated with an entire function in the Laguerre-Polya class that are orthogonal are the Laguerre polynomials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Using the functional integral formalism for the statistical generating functional in the statistical (finite temperature) quantum field theory, we prove the equivalence of many-photon Greens functions in the Duffin-Kennner-Petiau and Klein-Gordon-Fock statistical quantum field theories. As an illustration, we calculate the one-loop polarization operators in both theories and demonstrate their coincidence.
Resumo:
Effect of bound nucleon internal structure change on nuclear structure functions is investigated based on local quark-hadron duality. The bound nucleon structure functions calculated for charged-lepton and (anti)neutrino scattering are all enhanced in symmetric nuclear matter at large Bjorken-x (x greater than or similar to 0.85) relative to those in a free nucleon. This implies that a part of the enhancement observed in the nuclear structure function F-2 (in the resonance region) at large Bjorken-x (the EMC effect) is due to the effect of the bound nucleon internal structure change. However, the x dependence for the charged-lepton and (anti)neutrino scattering is different. The former (latter) is enhanced (quenched) in the region 0.8 less than or similar to x less than or similar to 0.9 (0.7 less than or similar to x less than or similar to 0.85) due to the difference of the contribution from axial vector forrn factor. Because of these differences charge symmetry breaking in parton distributions will be enhanced in nuclei. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We employ the NJL model to calculate mesonic correlation functions at finite temperature and compare results with recent lattice QCD simulations. We employ an implicit regularization scheme to deal with the divergent amplitudes to obtain ambiguity-free, scale-invariant and symmetry-preserving physical amplitudes. Making the coupling constants of the model temperature dependent, we show that at low momenta our results agree qualitatively with lattice simulations.
Resumo:
We present an analytic study of the finite size effects in sine-Gordon model, based on the semi-classical quantization of an appropriate kink background defined on a cylindrical geometry. The quasi-periodic kink is realized as an elliptic function with its real period related to the size of the system. The stability equation for the small quantum fluctuations around this classical background is of Lame type and the corresponding energy eigenvalues are selected inside the allowed bands by imposing periodic boundary conditions. We derive analytical expressions for the ground state and excited states scaling functions, which provide an explicit description of the flow between the IR and UV regimes of the model. Finally, the semiclassical form factors and two-point functions of the basic field and of the energy operator are obtained, completing the semiclassical quantization of the sine-Gordon model on the cylinder. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Two methods for calculating inner products of Schur functions in terms of outer products and plethysms are given and they are easy to implement on a machine. One of these is derived from a recent analysis of the SO(8) proton-neutron pairing model of atomic nuclei. The two methods allow for generation of inner products for the Schur functions of degree up to 20 and even beyond.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)