994 resultados para Apoyo a la enseñanza
Resumo:
Se reporta una investigación realizada con alumnos de 15- 16 años sobre los algoritmos de construcción de un Arco Capaz de segmento y ángulo dado. Se propuso a los alumnos un problema cuya solución óptima es un Arco Capaz de segmento y ángulo dado, y se les requirió luego que construyeran dicho arco utilizando regla, compás y semicírculo. Los alumnos idearon diversas construcciones para el Arco Capaz pero en ningún momento aparece la construcción tradicional de Euclides. Básicamente, la idea que usan los estudiantes para construir el Arco Capaz, es la de obtener un triángulo cualquiera tal que uno de sus ángulos sea el ángulo dado para luego determinar su circuncentro y trazar el Arco.
Resumo:
El curso funciones matemáticas en la enseñanza secundaria es la primera experiencia de capacitación masiva de docentes a nivel nacional en la modalidad a distancia, usando las tecnologías de la información y comunicación (TICs), con cobertura nacional e impulsada por el Ministerio de Educación de Chile. La formación se centra en una área específica del currículo como lo es la matemática en el nivel secundario y en un contenido curricular concreto las funciones. El conocimiento de la reforma curricular, la generación de material didáctico, la incorporación de las TICs en las prácticas pedagógicas y la evaluación de los aprendizajes, han sido los contenidos sobre los cuales se ha diseñado y estructurado el curso. La metodología de trabajo situó al docente en el centro del aprendizaje, como una aprendiz que define en forma autónoma su camino de aprendizaje de acuerdo a sus intereses y motivaciones. Los resultados muestran una deserción inicial importante, pero luego un alto compromiso y permanencia en el curso, valoración de los contenidos, los recursos propuestos, las estrategias de enseñanza y, la metodología de trabajo implementada.
Resumo:
Las clases de matemáticas no debieran tener como objetivo fundamental el aprendizaje de contenidos (definiciones, teoremas, axiomas…) que posteriormente serán aplicados a la resolución de un gran listado de ejercicios y problemas propuestos por el profesor y que justificará el aprendizaje de dichos contenidos, sino que, por el contrario, debieran partir con un problema concreto y familiar para el alumno. Una vez planteado éste y discutido por todos, estudiantes y profesor, traerá como consecuencia la obligación de resolverlo y por tanto la necesidad del aprendizaje de las técnicas que son necesarias para ello y recurrir al uso de tecnología disponible. Es muy importante destacar que durante todo el proceso el alumno hace conjeturas que irá verificando en cada paso. Se dará cuenta que algunas de las conjeturas que hizo son correctas y que otras no lo son, es decir, cometerá errores y aciertos, en función de los cuales irá cimentando su aprendizaje. Pero, por sobre todo, debe aprender que “va al colegio a equivocarse”, pero que no debe quedarse en el error, que en la discusión con sus compañeros y el profesorado encontrará la(s) solucione(s), que es probable que más de una sirva, pero que también unas son mejores que otras, que en algunos casos hay una solución óptima, en definitiva irá “aprendiendo a aprender”. Se ilustra lo anterior planteando resolver un clásico problema de construcción de cajas utilizando como herramienta de aprendizaje el software DERIVE 5.
Resumo:
La conferencia aborda la enseñanza de la estadística, destacando tres modelos específicos del área: la guía GAISE, el ciclo investigativo PPDAC, y el ambiente para el aprendizaje del razonamiento estadístico SRLE. Además, se centra en el desarrollo del pensamiento estadístico según la jerarquía cognitiva de alfabetización estadística, razonamiento y pensamiento estadístico.
Resumo:
Para que el aprendizaje ocurra, es necesario que los estudiantes se unen momentos de exploración, al realizar experimentos contextualizados en el mundo físico, con momentos de reflexión. En este sentido, el objetivo de este taller es presentar proyectos de aprendizaje como una alternativa pedagógica para promover la construcción del conocimiento estadístico de los estudiantes. En primer lugar, vamos a abordar la forma de desarrollar proyectos de aprendizaje en la enseñanza de estadística. Para orientar las acciones futuras de los participantes, se presentarán las estrategias metodológicas que ya se aplican en la conducción del desarrollo de proyectos de aprendizaje en la enseñanza de la estadística en los cursos de licenciatura en diversas áreas del conocimiento en Brasil.
Resumo:
El presente trabajo se ubica en la línea de educación estocástica en lo concerniente al conocimiento profesional del profesor; se pretende, explorar los conocimientos del profesor para la enseñanza de la probabilidad en la educación media colombiana. Para ello, se utiliza un análisis del discurso sobre las ideas expuestas por diversos autores en la literatura y el enfoque cualitativo de investigación mediante un estudio de casos. Se espera ampliar el panorama referente a los conocimientos necesarios para orientar el tema de probabilidad dentro del currículo de matemáticas en la educación de nivel pre universitario.
Resumo:
El propósito de la investigación fue determinar la diferencia en el aprendizaje significativo del concepto de derivada y reglas de derivación, en dos grupos de estudiantes de cálculo diferencial de la Universidad del Quindío, en uno utilizando la estrategia didáctica de enseñanza orientada desde conceptos previos, recorrido histórico, fases real, simbólica y conceptual y la resolución de problemas, y en el otro la estrategia didáctica tradicional, el tipo de investigación fue comparativa y correlacional. El diseño metodológico es cuasiexperimental. Se aplicó la prueba t-student para definir los resultados entre los grupos. Se llegó a la conclusión de que la estrategia didáctica propuesta en la investigación permitió que los estudiantes del grupo experimental comprendieran con mayor claridad las temáticas tratadas.
Resumo:
Esta propuesta metodológica, nace como producto de la tesis de maestría de uno de los ponentes, en ella se intenta mostrar una forma de enseñar las secciones cónicas en un ambiente didáctico que se basa en que el estudiante aprenda haciendo. Por ello, se presentan actividades para que el estudiante explore y descubra características de las figuras que él construirá y, en diálogo con sus compañeros y el docente, construya su propio conocimiento. Para lograr este proceso se empleó como referente teórico el modelo de Van-Hiele el cual se caracteriza al tener dos secciones, una de las cuales es descriptiva, en ella se observan niveles de razonamiento. La otra parte nos da a los maestros las pautas para que nuestros estudiantes avancen de un nivel a otro, estas pautas se conocen como fases de aprendizaje.
Resumo:
La enseñanza de las matemáticas en un contexto de inclusión escolar supone un reto para el sistema educativo en la actualidad. El iniciar a inducir contenidos formales y de un nivel de abstracción elevado en un contexto de estudiantes con necesidades educativas especiales supone un cambio en la forma que se presentas estos contenidos. El presente trabajo describe el diseño, puesta en práctica y análisis de una propuesta de enseñanza de la geometría analítica con estudiantes del grado decimo del colegio Euskadi (Colombia). Logrando analizar las implicaciones de la metodología aula taller y el papel fundamental de la geometría como mediación entre el mundo real y las matemáticas.
Resumo:
En este artículo analizamos los tipos de tareas que se pueden realizar con Thesaurus, un diccionario multimedia de matemáticas en red, utilizando el aula de informática para la clase de matemáticas en la ESO. Asimismo valoramos su influencia en el desarrollo de competencias matemáticas. El estudio se centra en el diseño y puesta en práctica de unidades didácticas de geometría con Thesaurus y en el análisis de los resultados de pruebas piloto realizadas por distintos grupos de alumnos.
Resumo:
En este artículo se obtiene un método de obtención de rectas tangentes a curvas polinómicas sin necesidad de conocer el cálculo de derivadas. Incluso no precisa conocimientos previos de trigonometría. El cálculo de máximos y mínimos es inmediato. El procedimiento que se presenta puede considerarse como una primera toma de contacto del estudiante, de manera inmediata, con los problemas con los que se va a encontrar posteriormente al estudiar el cálculo diferencial. Este método está pensado para incitar al alumno el interés por las derivadas.
Resumo:
Este artículo recoge el contenido de la intervención de su autor el 21 de febrero de 2002 ante la Ponencia sobre «La situación de las enseñanzas científicas en la educación secundaria» creada en la primavera de 2001 en la Comisión de Educación, Cultura y Deporte del Senado español, y en la que colaboran las Reales Sociedades de Matemáticas, Física y Química.
Resumo:
El objetivo de este artículo es concienciarnos de la importancia de aprovechar los conocimientos de geometría que poseen nuestros alumnos para explicar el concepto de probabilidad. Queremos demostrar lo beneficioso que, desde un punto de vista didáctico, puede ser la unión de la geometría y la probabilidad
Resumo:
A partir del innegable hecho de la influencia de las nuevas tecnologías en la sociedad actual, se presenta aquí una reflexión sobre su influencia en la enseñanza de las matemáticas: desde los cambios metodológicos que su uso implica y los problemas que causa en la organización de los centros educativos, pasando por su presencia en el currículo de matemáticas y las sugerencias que se hacen para propiciar tal uso, hasta la presentación de algunos programas informáticos, contenidos y forma de utilización, así como los distintos bloques de contenidos del currículo de matemáticas a los que se ajustan.
Resumo:
En el artículo se exponen dos métodos de resolución de inecuaciones. Se comparan desde varios puntos de vista y se comentan algunos aspectos del trabajo realizado a partir de 1983 en la enseñanza de dicho tópico en la facultad de ciencias de la Universidad Central de Venezuela.