995 resultados para 332.15
Volcanic eruptions in the Longgang Volcanic Field, northeastern China, during the past 15 000 years.
Resumo:
We report VLBI observations of 15 EGRET-detected AGNs with European VLBI Network (EVN) at 5 GHz. All sources in the sample display core-jet structures.
Resumo:
在黑白仰鼻猴(Rhinopithecus bieti)分布区北端的南仁(99o04’E, 28o34’N), 野外工作分别于2001年4月10日 - 6月30 日(代表冬末和春季),9月14日 - 12月20日(夏秋季)进行。我们分别用粪便取样法、录像带记录和直接观察法收集了猴群生境的垂直利用、过夜处选择和社会组织数据。此外,我们于1998年8月20日到12月31日在中科院昆明动物研究所老所利用全发生取样法(All-Occurence sampling)收集了一个单雄多雌单元(One-male, multi-female unit: OMU)的性行为数据。另外,我们利用昆明动物所1994 - 2003年和昆明动物园1991 - 2003年笼养黑白仰鼻猴群的出生记录来说明出生季节和出生间隔。 黑白仰鼻猴群全年在3500 - 4300 m的林带上活动,集中利用的海拔带为3900 - 4200 m,这可能与猴群的主食(松萝)主要分布于高海拔有关。冬季, 山沟中的粪便密度高于山脊,这可能是猴群在沟中过夜的缘故。猴群喜欢在树高(27.5 ± 3.2 m)较高、胸径(57.9 ± 16.9 cm)和树冠(6.3 ± 1.4 m)大的针叶树(云冷杉)上过夜。猴群冬季喜欢在阳坡中部的针叶树上过夜,这样既安全又可以接受适量的阳光照射。这是猴群在选择最安全和最暖和过夜处的一种折衷策略。 1994年猴群OMUs大小为7.8 ± 1.7(n = 17),成年性比(M/F)是1.0: 3.8。2001年OMUs大小为10.1 ± 3.7 (n = 15),成年性比是1.0: 4.9。1994-2001年,OMUs中每个成年雌性每年的平均增长率是0.04。这种OMU-band两层社会组织与Kirkpatrick(1996)的报道一致。 雌性以匍匐地面或栖木上,同时面部和视线左右摆动,或者坐着上下移动头部的动作邀配;雄性则以伴有特别的叫声、露齿动颌表情邀配。在有射精记录的观察日中,平均每5.2次爬跨有1次射精,而单次爬跨就射精的仅占4.4%。雌性邀配了18次射精爬跨的大多数(72%),但163次非射精爬跨中她们邀配的仅为45%。雄性在射精交配中叫声多于非射精交配。该种交配模式与其它疣猴亚科动物相似,而性内交配竞争可能与这种模式的进化有关。 笼养黑白仰鼻猴群的出生日期为12 - 6月份,出生高峰期为3 - 5月份。猴群的平均出生日期为4月18日(标准差为43天),中位出生日期为4月10日。猴群的出生间隔平均为624 ± 150天(n = 15,范围:332 - 787天)。幼猴可活到1岁后的出生间隔(706 ± 71, n = 12, 498 - 787天)显著长于1岁内死亡或流产后的出生间隔(428 ± 87, n = 5, 332 - 568天)。婴猴性比(M/F)显著偏离1: 1。
Resumo:
We report our recent progress of investigations on InGaN-based blue-violet laser diodes (LDs). The room-temperature (RT) cw operation lifetime of LDs has extended to longer than 15.6 h. The LD structure was grown on a c-plane free-standing (FS) GaN substrate by metal organic chemical vapor deposition (MOCVD). The typical threshold current and voltage of LD under RT cw operation are 78 mA and 6.8 V, respectively. The experimental analysis of degradation of LD performances suggests that after aging treatment, the increase of series resistance and threshold current can be mainly attributed to the deterioration of p-type ohmic contact and the decrease of internal quantum efficiency of multiple quantum well (MQW), respectively.
Resumo:
Direct ion beam deposition of carbon films on silicon in the ion energy range of 15-500 eV and temperature range of 25-800-degrees-C has been studied. The work was carried out using mass-separated C+ and CH3+ ions under ultrahigh vacuum. The films were characterized with x-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and transmission electron diffraction analysis. In the initial stage of the deposition, carbon implanted into silicon induced the formation of silicon carbide, even at room temperature. Further carbon ion bombardment then led to the formation of a carbon film. The film properties were sensitive to the deposition temperature but not to the ion energy. Films deposited at room temperature consisted mainly of amorphous carbon. Deposition at a higher temperature, or post-deposition annealing, led to the formation of microcrystalline graphite. A deposition temperature above 800-degrees-C favored the formation of microcrystalline graphite with a preferred orientation in the (0001) direction. No evidence of diamond formation in these films was observed.
Resumo:
Current-based microscopic defect analysis methods with optical filling techniques, namely current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC), have been used to study defect levels in a high resistivity silicon detector (p(+)-n-n(+)) induced by very high fluence neutron (VHFN) irradiation (1.7x10(15) n/cm(2)). As many as fourteen deep levels have been detected by I-DLTS. Arrhenius plots of the I-DLTS data have shown defects with energy levels ranging from 0.03 eV to 0.5 eV in the energy band gap. Defect concentrations of relatively shallow levels (E(t) < 0.33 eV) are in the order of 10(13)cm(-3), while those for relatively deep levels (E(t) > 0.33 eV) are in the order of 10(14) cm(-3). TSC data have shown similar defect spectra. A full depletion voltage of about 27,000 volts has been estimated by C-V measurements for the as-irradiated detector, which corresponds to an effective space charge density (N-eff) in the order of 2x10(14) cm(-3). Both detector leakage current and full depletion voltage have been observed to increase with elevated temperature annealing (ETA). The increase of the full depletion voltage corresponds to the increase of some deep levels, especially the 0.39 eV level. Results of positron annihilation spectroscopy have shown a decrease of total concentration of vacancy related defects including vacancy clusters with ETA, suggesting the breaking up of vacancy clusters as possible source of vacancies for the formation of single defects during the reverse anneal.