983 resultados para ‘I’ boundaries
Resumo:
Background aims Mesenchymal stromal cells (MSCs) cultivated from the corneal limbus (L-MSCs) provide a potential source of cells for corneal repair. In the present study, we investigated the immunosuppressive properties of human L-MSCs and putative rabbit L-MSCs to develop an allogeneic therapy and animal model of L-MSC transplantation. Methods MSC-like cultures were established from the limbal stroma of human and rabbit (New Zealand white) corneas using either serum-supplemented medium or a commercial serum-free MSC medium (MesenCult-XF Culture Kit; Stem Cell Technologies, Melbourne, Australia). L-MSC phenotype was examined by flow cytometry. The immunosuppressive properties of L-MSC cultures were assessed using mixed leukocyte reactions. L-MSC cultures were also tested for their ability to support colony formation by primary limbal epithelial (LE) cells. Results Human L-MSC cultures were typically CD34−, CD45− and HLA-DR− and CD73+, CD90+, CD105+ and HLA-ABC+. High levels (>80%) of CD146 expression were observed for L-MSC cultures grown in serum-supplemented medium but not cultures grown in MesenCult-XF (approximately 1%). Rabbit L-MSCs were approximately 95% positive for major histocompatibility complex class I and expressed lower levels of major histocompatibility complex class II (approximately 10%), CD45 (approximately 20%), CD105 (approximately 60%) and CD90 (<10%). Human L-MSCs and rabbit L-MSCs suppressed human T-cell proliferation by up to 75%. Conversely, L-MSCs from either species stimulated a 2-fold to 3-fold increase in LE cell colony formation. Conclusions L-MSCs display immunosuppressive qualities in addition to their established non-immunogenic profile and stimulate LE cell growth in vitro across species boundaries. These results support the potential use of allogeneic L-MSCs in the treatment of corneal disorders and suggest that the rabbit would provide a useful pre-clinical model.
Resumo:
1. There is evidence to suggest that essential hypertension is a polygenic disorder and that it arises from yet-to-be-identified predisposing variants of certain genes that influence blood pressure. The cloning of various hormone, enzyme, adrenoceptor and hormone receptor genes whose products are involved in blood pressure control and the identification of polymorphisms of these has permitted us to test their genetic association with hypertension. 2. Cross-sectional analyses of a number of candidate gene markers were performed in hypertensive and normotensive subjects who were selected on the basis of both parents being either hypertensive or normotensive, respectively, and the difference in total alleles on all chromosomes for each polymorphism between the hypertensive and normotensive groups was test by χ analysis with one degree of freedom. 3. A marked association was observed between hypertension and insertion alleles of polymorphisms of the insulin receptor gene (INSR) (P<0.0040) and the dipeptidyl carboxypeptidase-1 (angiotensin I-converting enzyme; kininase II) gene (DCP1) (P<0.0018). No association with hypertension was evident, however, for polymorphisms of the growth hormone, low-density lipoprotein receptor, renal kallikrein, α2- and β1-adrenoreceptor, atrial natriuretic factor and insulin genes. 4. All but one of the hypertensive subjects had at least one of the hypertension-associated alleles, and although subjects homozygous for both were three times more frequent in the hypertensive group, examination of the nine possible genotypes suggested that the INSR and DCP1 alleles are independent markers for hypertension. 5. The present results suggest that genetic variant(s) in close linkage disequilibrium with polymorphisms at INSR and DCP1 may be involved in part in the aetiology of essential hypertension.
Resumo:
This paper deals with the question—what are the effects of displacement on the perceptions diasporic Vietnamese have of their homeland, and of themselves? Identity has become an issue partly because there has frequently been an assumption that identity is somehow seamless, stable and unchanging. Migration highlights the relational and intersubjective nature of identity (see Bhabha, 1990; Hall, 1990). The homeland itself is also a site of constant transformation and negotiation of identities but the translocation of people accentuates the disjuncture between place and identity. When examining the Vietnamese diaspora, identity must be conceived within the locus of power relations that Vietnamese people operate within, both at a local and global level. The efflorescence of an interest in the politics of identity has come about through massive post-war decolonisation and the redrawing of national boundaries. Here, I will scrutinise how these wider relations of power act upon diasporic identities.
Resumo:
Nanowires (NWs) have attracted appealing and broad application owing to their remarkable mechanical, optical, electrical, thermal and other properties. To unlock the revolutionary characteristics of NWs, a considerable body of experimental and theoretical work has been conducted. However, due to the extremely small dimensions of NWs, the application and manipulation of the in situ experiments involve inherent complexities and huge challenges. For the same reason, the presence of defects appears as one of the most dominant factors in determining their properties. Hence, based on the experiments' deficiency and the necessity of investigating different defects' influence, the numerical simulation or modelling becomes increasingly important in the area of characterizing the properties of NWs. It has been noted that, despite the number of numerical studies of NWs, significant work still lies ahead in terms of problem formulation, interpretation of results, identification and delineation of deformation mechanisms, and constitutive characterization of behaviour. Therefore, the primary aim of this study was to characterize both perfect and defected metal NWs. Large-scale molecular dynamics (MD) simulations were utilized to assess the mechanical properties and deformation mechanisms of different NWs under diverse loading conditions including tension, compression, bending, vibration and torsion. The target samples include different FCC metal NWs (e.g., Cu, Ag, Au NWs), which were either in a perfect crystal structure or constructed with different defects (e.g. pre-existing surface/internal defects, grain/twin boundaries). It has been found from the tensile deformation that Young's modulus was insensitive to different styles of pre-existing defects, whereas the yield strength showed considerable reduction. The deformation mechanisms were found to be greatly influenced by the presence of defects, i.e., different defects acted in the role of dislocation sources, and many affluent deformation mechanisms had been triggered. Similar conclusions were also obtained from the compressive deformation, i.e., Young's modulus was insensitive to different defects, but the critical stress showed evident reduction. Results from the bending deformation revealed that the current modified beam models with the considerations of surface effect, or both surface effect and axial extension effect were still experiencing certain inaccuracy, especially for the NW with ultra small cross-sectional size. Additionally, the flexural rigidity of the NW was found to be insensitive to different pre-existing defects, while the yield strength showed an evident decrease. For the resonance study, the first-order natural frequency of the NW with pre-existing surface defects was almost the same as that from the perfect NW, whereas a lower first-order natural frequency and a significantly degraded quality factor was observed for NWs with grain boundaries. Most importantly, the <110> FCC NWs were found to exhibit a novel beat phenomenon driven by a single actuation, which was resulted from the asymmetry in the lattice spacing in the (110) plane of the NW cross-section, and expected to exert crucial impacts on the in situ nanomechanical measurements. In particular, <110> Ag NWs with rhombic, truncated rhombic, and triangular cross-sections were found to naturally possess two first-mode natural frequencies, which were envisioned with applications in NEMS that could operate in a non-planar regime. The torsion results revealed that the torsional rigidity of the NW was insensitive to the presence of pre-existing defects and twin boundaries, but received evident reduction due to grain boundaries. Meanwhile, the critical angle decreased considerably for defected NWs. This study has provided a comprehensive and deep investigation on the mechanical properties and deformation mechanisms of perfect and defected NWs, which will greatly extend and enhance the existing knowledge and understanding of the properties/performance of NWs, and eventually benefit the realization of their full potential applications. All delineated MD models and theoretical analysis techniques that were established for the target NWs in this research are also applicable to future studies on other kinds of NWs. It has been suggested that MD simulation is an effective and excellent tool, not only for the characterization of the properties of NWs, but also for the prediction of novel or unexpected properties.
Resumo:
Discipline boundaries of science and technology education are inevitable. Often, such barriers are an obstacle to industry-based learning leading to preventable complexities. Industry-based learning is a complex scenario, rather than conventional learning, leading to the study of liquid learning, which is a timely concept to investigate learning without boundaries. Liquid learning consists of accountability, expectations and driven by outcomes with different learning choices. Liquid learning is a significant phenomenon requiring awareness in the science and technology education. This paper aims to discuss some practical issues when designing industry-based learning without boundaries. A case study approach is reviewed and presented.
Resumo:
Introduction: The delivery of health care in the 21st century will look like no other in the past. The fast paced technological advances that are being made will need to transition from the information age into clinical practice. The phenomenon of e-Health is the over-arching form of information technology and telehealth is one arm of that phenomenon. The uptake of telehealth both in Australia and overseas, has changed the face of health service delivery to many rural and remote communities for the better, removing what is known as the tyranny of distance. Many studies have evaluated the satisfaction and cost-benefit analysis of telehealth across the organisational aspects as well as the various adaptations of clinical pathways and this is the predominant focus of most studies published to date. However, whilst comments have been made by many researchers about the need to improve and attend to the communication and relationship building aspects of telehealth no studies have examined this further. The aim of this study was to identify the patient and clinician experiences, concerns, behaviours and perceptions of the telehealth interaction and develop a training tool to assist these clinicians to improve their interaction skills. Methods: A mixed methods design combining quantitative (survey analysis and data coding) and qualitative (interview analysis) approaches was adopted. This study utilised four phases to firstly qualitatively explore the needs of clients (patients) and clinicians within a telehealth consultation then designed, developed, piloted and quantitatively and qualitatively evaluated the telehealth communication training program. Qualitative data was collected and analysed during Phase 1 of this study to describe and define the missing 'communication and rapport building' aspects within telehealth. This data was then utilised to develop a self-paced communication training program that enhanced clinicians existing skills, which comprised of Phase 2 of this study to develop the interactive program. Phase 3 included evaluating the training program with 26 clinicians and results were recorded pre and post training, whilst phase 4 was the pilot for future recommendations of this training program using a patient group within a Queensland Health setting at two rural hospitals. Results: Comparisons of pre and post training data on 1) Effective communication styles, 2) Involvement in communication training package, 3) satisfaction pre and post training, and 4) health outcomes pre and post training indicated that there were differences between pre and post training in relation to effective communication style, increased satisfaction and no difference in health outcomes between pre and post training for this patient group. The post training results revealed over half of the participants (N= 17, 65%) were more responsive to non-verbal cues and were better able to reflect and respond to looks of anxiousness and confusion from a 'patient' within a telehealth consultation. It was also found that during post training evaluations, clinicians had enhanced their therapeutic communication with greater detail to their own body postures, eye contact and presentation. There was greater time spent looking at the 'patient' with an increase of 35 second intervals of direct eye contact and less time spent looking down at paperwork which decreased by 20 seconds. Overall 73% of the clinicians were satisfied with the training program and 61% strongly agreed that they recognised areas of their communication that needed improving during a telehealth consultation. For the patient group there was significant difference post training in rapport with a mean score from 42 (SD = 28, n = 27) to 48 (SD = 5.9, n = 24). For communication comfort of the patient group there was a significant difference between the pre and post training scores t(10) = 27.9, p = .002, which meant that overall the patients felt less inhibited whilst talking to the clinicians and more understood. Conclusion: The aim of this study was to explore the characteristics of good patient-clinician communication and unmet training needs for telehealth consultations. The study developed a training program that was specific for telehealth consultations and not dependent on a 'trainer' to deliver the content. In light of the existing literature this is a first of its kind and a valuable contribution to the research on this topic. It was found that the training program was effective in improving the clinician's communication style and increased the satisfaction of patient's within an e-health environment. This study has identified some historical myths that telehealth cannot be part of empathic patient centred care due to its technology tag.
Resumo:
The nanostructured surface of biomaterials plays an important role in improving their in vitro cellular bioactivity as well as stimulating in vivo tissue regeneration. Inspired by the mussel’s adhesive versatility, which is thought to be due to the plaque–substrate interface being rich in 3,4-dihydroxy-L-phenylalamine (DOPA) and lysine amino acids, in this study we developed a self-assembly method to prepare a uniform calcium phosphate (Ca-P)/polydopamine composite nanolayer on the surface of b-tricalcium phosphate (b-TCP) bioceramics by soaking b-TCP bioceramics in Tris–dopamine solution. It was found that the addition of dopamine, reaction temperature and reaction time are three key factors inducing the formation of a uniform Ca-P/polydopamine composite nanolayer. The formation mechanism of a Ca-P/polydopamine composite nanolayer involved two important steps: (i) the addition of dopamine to Tris–HCl solution decreases the pH value and accelerates Ca and P ionic dissolution from the crystal boundaries of b-TCP ceramics; (ii) dopamine is polymerized to form self-assembled polydopamine film and, at the same time, nanosized Ca-P particles are mineralized with the assistance of polydopamine, in which the formation of polydopamine occurs simultaneously with Ca-P mineralization (formation of nanosized microparticles composed of calcium phosphate-based materials), and finally a self-assembled Ca-P/polydopamine composite nanolayer forms on the surface of the b-TCP ceramics. Furthermore, the formed self-assembled Ca-P/polydopamine composite nanolayer significantly enhances the surface roughness and hydrophilicity of b-TCP ceramics, and stimulates the attachment, proliferation, alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, COL1 and Runx2) of human bone marrow stromal cells. Our results suggest that the preparation of self-assembled Ca-P/polydopamine composite nanolayers is a viable method to modify the surface of biomaterials by significantly improving their surface physicochemical properties and cellular bioactivity for bone regeneration application.
Resumo:
A qualitative analysis of the expected dilatation strain field in the vicinity of an array of grain-boundary (GB) dislocations is presented. The analysis provides a basis for the prediction of the critical current densities (jc) across low-angle YBa2Cu3O7- (YBCO) GBs as a function of their energy. The introduction of the GB energy allows the extension of the analysis to high-angle GBs using established models which predict the GB energy as a function of misorientation angle. The results are compared to published data for jc across [001]-tilt YBCO GBs for the full range of misorientations, showing a good fit. Since the GB energy is directly related to the GB structure, the analysis may allow a generalization of the scaling behavior of jc with the GB energy. © 1995 The American Physical Society.
Resumo:
An electropolishing method has been developed for preparing sharp needles from polycrystalline YBa2Cu3O7-δ by modifying a recipe for TEM specimen preparation. The method is characterized by a polishing temperature of below 0°C, a non-acidic electrolyt and an even removal of the constituent phases. An approach was employed of combining I-V measurements for polishing process and microscopical observation of surface morphology in finding optimum polishing conditions. TEM evidenced that no preferential attack appeared to grain boundaries. X-ray diffractometry and electron diffraction implied that no change in oxygen content occurred during electropolishing. The sharpness of the tip was examined by field-ion microscopy.
Resumo:
We have studied weak links and dc-SQUIDs made from pulsed laser deposited YBa2Cu3O7-δ thin films on Y-ZrO 2 bicrystal substrates. The transport properties of the weak links were studied as a function of the misorientation angle (θ) between the two halves of the bicrystal and an exponential dependence of the weak link critical current density was observed for angles up to 40°at 77 K. Josephson effects with clear microwave and magnetic field responses were observed. An optimum dc-SQUID performance at 77 K was obtained for θ=32°. At this temperature, we achieved a periodic magnetic field response with a modulation depth of 12 μV.
Resumo:
The microstructures of the grain boundaries in epitaxial YBa2Cu3O7-δ thin films grown on [001]-tilt yttria-stabilized ZrO2 bicrystal substrates were characterized by TEM and at. force microscopy. The exact boundary plane geometries of the bicrystal substrates were not transferred to the films which instead had wiggling grain boundaries. [on SciFinder(R)]
Resumo:
The assessment of choroidal thickness from optical coherence tomography (OCT) images of the human choroid is an important clinical and research task, since it provides valuable information regarding the eye’s normal anatomy and physiology, and changes associated with various eye diseases and the development of refractive error. Due to the time consuming and subjective nature of manual image analysis, there is a need for the development of reliable objective automated methods of image segmentation to derive choroidal thickness measures. However, the detection of the two boundaries which delineate the choroid is a complicated and challenging task, in particular the detection of the outer choroidal boundary, due to a number of issues including: (i) the vascular ocular tissue is non-uniform and rich in non-homogeneous features, and (ii) the boundary can have a low contrast. In this paper, an automatic segmentation technique based on graph-search theory is presented to segment the inner choroidal boundary (ICB) and the outer choroidal boundary (OCB) to obtain the choroid thickness profile from OCT images. Before the segmentation, the B-scan is pre-processed to enhance the two boundaries of interest and to minimize the artifacts produced by surrounding features. The algorithm to detect the ICB is based on a simple edge filter and a directional weighted map penalty, while the algorithm to detect the OCB is based on OCT image enhancement and a dual brightness probability gradient. The method was tested on a large data set of images from a pediatric (1083 B-scans) and an adult (90 B-scans) population, which were previously manually segmented by an experienced observer. The results demonstrate the proposed method provides robust detection of the boundaries of interest and is a useful tool to extract clinical data.
Resumo:
The electrochemical reduction of TCNQ to TCNQ•- in acetonitrile in the presence of [Cu(MeCN)4]+ has been undertaken at boron-doped diamond (BDD) and indium tin oxide (ITO) electrodes. The nucleation and growth process at BDD is similar to that reported previously at metal electrodes. At an ITO electrode, the electrocrystallization of more strongly adhered, larger, branched, needle-shaped phase I CuTCNQ crystals is detected under potential step conditions and also when the potential is cycled over the potential range of 0.7 to −0.1 V versus Ag/AgCl (3 M KCl). Video imaging can be used at optically transparent ITO electrodes to monitor the growth stage of the very large branched crystals formed during the course of electrochemical experiments. Both in situ video imaging and ex situ X-ray diffraction and scanning electron microscopy (SEM) data are consistent with the nucleation of CuTCNQ taking place at a discrete number of preferred sites on the ITO surface. At BDD electrodes, ex situ optical images show that the preferential growth of CuTCNQ occurs at the more highly conducting boron-rich areas of the electrode, within which there are preferred sites for CuTCNQ formation.