984 resultados para traffic monitoring
Resumo:
Popular wireless network standards, such as IEEE 802.11/15/16, are increasingly adopted in real-time control systems. However, they are not designed for real-time applications. Therefore, the performance of such wireless networks needs to be carefully evaluated before the systems are implemented and deployed. While efforts have been made to model general wireless networks with completely random traffic generation, there is a lack of theoretical investigations into the modelling of wireless networks with periodic real-time traffic. Considering the widely used IEEE 802.11 standard, with the focus on its distributed coordination function (DCF), for soft-real-time control applications, this paper develops an analytical Markov model to quantitatively evaluate the network quality-of-service (QoS) performance in periodic real-time traffic environments. Performance indices to be evaluated include throughput capacity, transmission delay and packet loss ratio, which are crucial for real-time QoS guarantee in real-time control applications. They are derived under the critical real-time traffic condition, which is formally defined in this paper to characterize the marginal satisfaction of real-time performance constraints.
Resumo:
A high performance, low computational complexity rate-based flow control algorithm which can avoid congestion and achieve fairness is important to ATM available bit rate service. The explicit rate allocation algorithm proposed by Kalampoukas et al. is designed to achieve max–min fairness in ATM networks. It has several attractive features, such as a fixed computational complexity of O(1) and the guaranteed convergence to max–min fairness. In this paper, certain drawbacks of the algorithm, such as the severe overload of an outgoing link during transient period and the non-conforming use of the current cell rate field in a resource management cell, have been identified and analysed; a new algorithm which overcomes these drawbacks is proposed. The proposed algorithm simplifies the rate computation as well. Compared with Kalampoukas's algorithm, it has better performance in terms of congestion avoidance and smoothness of rate allocation.
Resumo:
The use of feedback technologies, in the form of products such as Smart Meters, is increasingly seen as the means by which 'consumers' can be made aware of their patterns of resource consumption, and to then use this enhanced awareness to change their behaviour to reduce the environmental impacts of their consumption. These technologies tend to be single-resource focused (e.g. on electricity consumption only) and their functionality defined by persons other than end-users (e.g. electricity utilities). This paper presents initial findings of end-users' experiences with a multi-resource feedback technology, within the context of sustainable housing. It proposes that an understanding of user context, supply chain management and market diffusion issues are important design considerations that contribute to technology 'success'.
Resumo:
Understanding the impacts of traffic and climate change on water quality helps decision makers to develop better policy and plans for dealing with unsustainable urban and transport development. This chapter presents detailed methodologies developed for sample collection and testing for heavy metals and total petroleum hydrocarbons, as part of a research study to investigate the impacts of climate change and changes to urban traffic characteristics on pollutant build-up and wash-off from urban road surfaces. Cadmium, chromium, nickel, copper, lead, iron, aluminium, manganese and zinc were the target heavy metals, and selected gasoline and diesel range organics were the target total petroleum hydrocarbons for this study. The study sites were selected to encompass the urban traffic characteristics of the Gold Coast region, Australia. An improved sample collection method referred to as ‘the wet and dry vacuum system’ for the pollutant build-up, and an effective wash-off plan to incorporate predicted changes to rainfall characteristics due to climate change, were implemented. The novel approach to sample collection for pollutant build-up helped to maintain the integrity of collection efficiency. The wash-off plan helped to incorporate the predicted impacts of climate change in the Gold Coast region. The robust experimental methods developed will help in field sample collection and chemical testing of different stormwater pollutants in build-up and wash-off.
Resumo:
This paper presents a Genetic Algorithms (GA) approach to resolve traffic conflicts at a railway junction. The formulation of the problem for the suitable application of GA will be discussed and three neighborhoods have been proposed for generation evolution. The performance of the GA is evaluated by computer simulation. This study paves the way for more applications of artificial intelligence techniques on a rather conservative industry.
Resumo:
This paper introduces an event-based traffic model for railway systems adopting fixed-block signalling schemes. In this model, the events of trains' arrival at and departure from signalling blocks constitute the states of the traffic flow. A state transition is equivalent to the progress of the trains by one signalling block and it is realised by referring to past and present states, as well as a number of pre-calculated look-up tables of run-times in the signalling block under various signalling conditions. Simulation results are compared with those from a time-based multi-train simulator to study the improvement of processing time and accuracy.
Resumo:
A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.
Resumo:
The Transport Certification Australia on-board mass feasibility project is testing various on-board mass devices in a range of heavy vehicles (HVs). Extensive field tests of on-board mass measurement systems for HVs have been conducted during 2008. These tests were of accuracy, robustness and tamper-evidence of heavy vehicle on-board mass telematics. All the systems tested showed accuracies within approximately +/- 500 kg of gross combination mass or approximately +/- 2% of the attendant weighbridge reading. Analysis of the dynamic data also showed encouraging results and has raised the possibility of use of such dynamic information in tamper evidence in two areas. This analysis was to determine if the use of averaged dynamic data could identify potential tampering or incorrect operating procedures as well as the possibility of dynamic measurements flagging a tamper event by the use of metrics including a tampering index (TIX). Technical and business options to detect tamper events will now be developed during implementation of regulatory OBM system application to Australian heavy vehicles (HVs).
Resumo:
Traffic control at a road junction by a complex fuzzy logic controller is investigated. The increase in the complexity of junction means more number of input variables must be taken into account, which will increase the number of fuzzy rules in the system. A hierarchical fuzzy logic controller is introduced to reduce the number of rules. Besides, the increase in the complexity of the controller makes formulation of the fuzzy rules difficult. A genetic algorithm based off-line leaning algorithm is employed to generate the fuzzy rules. The learning algorithm uses constant flow-rates as training sets. The system is tested by both constant and time-varying flow-rates. Simulation results show that the proposed controller produces lower average delay than a fixed-time controller does under various traffic conditions.
Resumo:
Short-term traffic flow data is characterized by rapid and dramatic fluctuations. It reflects the nature of the frequent congestion in the lane, which shows a strong nonlinear feature. Traffic state estimation based on the data gained by electronic sensors is critical for much intelligent traffic management and the traffic control. In this paper, a solution to freeway traffic estimation in Beijing is proposed using a particle filter, based on macroscopic traffic flow model, which estimates both traffic density and speed.Particle filter is a nonlinear prediction method, which has obvious advantages for traffic flows prediction. However, with the increase of sampling period, the volatility of the traffic state curve will be much dramatic. Therefore, the prediction accuracy will be affected and difficulty of forecasting is raised. In this paper, particle filter model is applied to estimate the short-term traffic flow. Numerical study is conducted based on the Beijing freeway data with the sampling period of 2 min. The relatively high accuracy of the results indicates the superiority of the proposed model.
Resumo:
Due to an ever increasing demand for more frequent and higher volume of train service, the physical conditions of tracks in modem railways are deteriorating more quickly when compared to tracks built decades ago. There are incidences in both the UK and Hong Kong indicating there are needs for a more stringent checks on the rail conditions using suitable and effective non-invasive and nondestructive condition monitoring system.
Resumo:
The demand for high quality rail services in the twenty-first century has put an ever increasing demand on all rail operators. In order to meet the expectation of their patrons, the maintenance regime of railway systems has to be tightened up, the track conditions have to be well looked after, the rolling stock must be designed to withstand heavy duty. In short, in an ideal world where resources are unlimited, one needs to implement a very rigorous inspection regime in order to take care of the modem needs of a railway system [1]. If cost were not an issue, the maintenance engineers could inspect the train body by the most up-to-date techniques such as ultra-sound examination, x-ray inspection, magnetic particle inspection, etc. on a regular basis. However it is inconceivable to have such a perfect maintenance regime in any commercial railway. Likewise, it is impossible to have a perfect rolling stock which can weather all the heavy duties experienced in a modem railway. Hence it is essential that some condition monitoring schemes are devised to pick up potential defects which could manifest into safety hazards. This paper introduces an innovative condition monitoring system for track profile and, together with an instrumented car to carry out surveillance of the track, will provide a comprehensive railway condition monitoring system which is free from the usual difficulty of electromagnetic compatibility issues in a typical railway environment
Resumo:
Acoustic emission (AE) technique is one of the popular diagnostic techniques used for structural health monitoring of mechanical, aerospace and civil structures. But several challenges still exist in successful application of AE technique. This paper explores various tools for analysis of recorded AE data to address two primary challenges: discriminating spurious signals from genuine signals and devising ways to quantify damage levels.
Resumo:
Managing the sustainability of urban infrastructure requires regular health monitoring of key infrastructure such as bridges. The process of structural health monitoring involves monitoring a structure over a period of time using appropriate sensors, extracting damage sensitive features from the measurements made by the sensors, and analysing these features to determine the current state of the structure. Various techniques are available for structural health monitoring of structures, and acoustic emission is one technique that is finding an increasing use in the monitoring of civil infrastructures such as bridges. Acoustic emission technique is based on the recording of stress waves generated by rapid release of energy inside a material, followed by analysis of recorded signals to locate and identify the source of emission and assess its severity. This chapter first provides a brief background of the acoustic emission technique and the process of source localization. Results from laboratory experiments conducted to explore several aspects of the source localization process are also presented. The findings from the study can be expected to enhance knowledge of the acoustic emission process, and to aid the development of effective bridge structure diagnostics systems.
Resumo:
This paper discusses diesel engine condition monitoring (CM) using acoustic emissions (AE) as well as some of the commonly encountered diesel engine problems. Also discussed are some of the underlying combustion related faults and the methods used in past studies to simulate diesel engine faults. The initial test involved an experimental simulation of two common combustion related diesel engine faults, namely diesel knock and misfire. These simulated faults represent the first step towards a comprehensive investigation and analysis into the characteristics of acoustic emission signals arising from combustion related diesel engine faults. Data corresponding to different engine running conditions was captured using in-cylinder pressure, vibration and acoustic emission transducers along with both crank angle encoder and top-dead centre (TDC) signals. Using these signals, it was possible to characterise the effect of different combustion conditions and hence, various diesel engine in-cylinder pressure profiles.