960 resultados para paid time off
Resumo:
Australian women make decisions about return to paid work and care for their child within a policy environment that presents mixed messages about maternal employment and child care standards. Against this background an investigation of first-time mothers’ decision-making about workforce participation and child care was undertaken. Four women were studied from pregnancy through the first postnatal year using interview and diary methods. Inductive analyses identified three themes, all focused on dimensions of family security: financial security relating to family income, emotional security relating to child care quality, and pragmatic security relating to child care access. The current policy changes that aim to increase child care quality standards in Australia present a positive step toward alleviating family insecurities but are insufficient to alleviate the evidently high levels of tension between workforce participation and family life experienced by women transitioning back into the workforce in Australia.
Resumo:
Conspicuity limitations make bicycling at night dangerous. This experiment quantified bicyclists’ estimates of the distance at which approaching drivers would first recognize them. Twenty five participants (including 13 bicyclists who rode at least once per week, and 12 who rode once per month or less) cycled in place on a closed-road circuit at night-time and indicated when they were confident that an approaching driver would first recognize that a bicyclist was present. Participants wore black clothing alone or together with a fluorescent bicycling vest, a fluorescent bicycling vest with additional retroreflective tape, or the fluorescent retroreflective vest plus ankle and knee reflectors in a modified ‘biomotion’ configuration. The bicycle had a light mounted on the handlebars which was either static, flashing or off. Participants judged that black clothing made them least visible, retroreflective strips on the legs in addition to a retroreflective vest made them most visible and that adding retroreflective materials to a fluorescent vest provides no conspicuity benefits. Flashing bicycle lights were associated with higher conspicuity than static lights. Additionally, occasional bicyclists judged themselves to be more visible than did frequent bicyclists. Overall, bicyclists overestimated their conspicuity compared to previously collected recognition distances and underestimated the conspicuity benefits of retroreflective markings on their ankles and knees. Participants mistakenly judged that a fluorescent vest that did not include retroreflective material would enhance their night-time conspicuity. These findings suggest that bicyclists have dangerous misconceptions concerning the magnitude of the night-time conspicuity problem and the potential value of conspicuity treatments.
Resumo:
Travel time in an important transport performance indicator. Different modes of transport (buses and cars) have different mechanical and operational characteristics, resulting in significantly different travel behaviours and complexities in multimodal travel time estimation on urban networks. This paper explores the relationship between bus and car travel time on urban networks by utilising the empirical Bluetooth and Bus Vehicle Identification data from Brisbane. The technologies and issues behind the two datasets are studied. After cleaning the data to remove outliers, the relationship between not-in-service bus and car travel time and the relationship between in-service bus and car travel time are discussed. The travel time estimation models reveal that the not-in-service bus travel time are similar to the car travel time and the in-service bus travel time could be used to estimate car travel time during off-peak hours
Resumo:
Introduction: Participants may respond to phases of a workplace walking program at different rates. This study evaluated the factors that contribute to the number of steps through phases of the program. The intervention was automated through a web-based program designed to increase workday walking. Methods: The study reviewed independent variable influences throughout phases I–III. A convenience sample of university workers (n=56; 43.6±1.7 years; BMI 27.44±.2.15 kg/m2; 48 female) were recruited at worksites in Australia. These workers were given a pedometer (Yamax SW 200) and access to the website program. For analyses, step counts entered by workers into the website were downloaded and mean workday steps were compared using a seemingly unrelated regression. This model was employed to capture the contemporaneous correlation within individuals in the study across observed time periods. Results: The model predicts that the 36 subjects with complete information took an average 7460 steps in the baseline two week period. After phase I, statistically significance increases in steps (from baseline) were explained by age, working status (full or part time), occupation (academic or professional), and self reported public transport (PT) use (marginally significant). Full time workers walked more than part time workers by about 440 steps, professionals walked about 300 steps more than academics, and PT users walked about 400 steps more than non-PT users. The ability to differentiate steps after two weeks among participants suggests a differential affect of the program after only two weeks. On average participants increased steps from week two to four by about 525 steps, but regular auto users had nearly 750 steps less than non-auto users at week four. The effect of age was diminished in the 4th week of observation and accounted for 34 steps per year of age. In phase III, discriminating between participants became more difficult, with only age effects differentiating their increase over baseline. The marginal effect of age by phase III compared to phase I, increased from 36 to 50, suggesting a 14 step per year increase from the 2nd to 6th week. Discussion: The findings suggest that participants responded to the program at different rates, with uniformity of effect achieved by the 6th week. Participants increased steps, however a tapering off occurred over time. Age played the most consistent role in predicting steps over the program. PT use was associated with increased step counts, while Auto use was associated with decreased step counts.
Resumo:
Dwell time at the busway station has a significant effect on bus capacity and delay. Dwell time has conventionally been estimated using models developed on the basis of field survey data. However field survey is resource and cost intensive, so dwell time estimation based on limited observations can be somewhat inaccurate. Most public transport systems are now equipped with Automatic Passenger Count (APC) and/or Automatic Fare Collection (AFC) systems. AFC in particular reduces on-board ticketing time, driver’s work load and ultimately reduces bus dwell time. AFC systems can record all passenger transactions providing transit agencies with access to vast quantities of data. AFC data provides transaction timestamps, however this information differs from dwell time because passengers may tag on or tag off at times other than when doors open and close. This research effort contended that models could be developed to reliably estimate dwell time distributions when measured distributions of transaction times are known. Development of the models required calibration and validation using field survey data of actual dwell times, and an appreciation of another component of transaction time being bus time in queue. This research develops models for a peak period and off peak period at a busway station on the South East Busway (SEB) in Brisbane, Australia.
Resumo:
This study investigates travel behaviour and wait-time activities as a component of passenger satisfaction with public transport in Brisbane, Australia. Australian transport planners recognise a variety of benefits to encouraging a mode shift away from automobile travel in favour of active and public transport use. Efforts to increase public transport ridership have included introducing state of the art passenger information systems, improving physical station access, and integrating system pricing, routes and scheduling for train, bus and ferry. Previous research regarding satisfaction with public transport emphasizes technical dimensions of service quality, including the timing and reliability of service. Those factors might be especially significant for frequent (commuting) travellers who look to balance the cost and efficiency of their travel options. In contrast, infrequent (leisure) passengers may be more concerned with way finding and the sensory experience of the journey. Perhaps due to the small relative proportion of trips made by river ferry compared to bus and rail, this mode of public transport has not received as much attention in travel-behaviour research. This case study of Brisbane’s river ferry system examines ferry passengers at selected terminals during peak and off-peak travel times to find out how travel behaviours and activities correlate to satisfaction with ferry travel. Data include 416 questionnaires completed by passengers intercepted during wait times at seven CityCat terminals in Brisbane. Descriptive statistical analysis revealed associations between specific wait time activities and satisfaction levels that could inform planners seeking to increase ridership and quality of life through ferry-oriented development.
Resumo:
Wide-Area Measurement Systems (WAMS) provide the opportunity of utilizing remote signals from different locations for the enhancement of power system stability. This paper focuses on the implementation of remote measurements as supplementary signals for off-center Static Var Compensators (SVCs) to damp inter-area oscillations. Combination of participation factor and residue method is used for the selection of most effective stabilizing signal. Speed difference of two generators from separate areas is identified as the best stabilizing signal and used as a supplementary signal for lead-lag controller of SVCs. Time delays of remote measurements and control signals is considered. Wide-Area Damping Controller (WADC) is deployed in Matlab Simulink framework and is tested under different operating conditions. Simulation results reveal that the proposed WADC improve the dynamic characteristic of the system significantly.
Resumo:
This paper discusses findings made during a study of energy use feedback in the home (eco-feedback), well after the novelty has worn off. Contributing towards four important knowledge gaps in the research, we explore eco-feedback over longer time scales, focusing on instances where the feedback was not of lasting benefit to users rather than when it was. Drawing from 23 semi-structured interviews with Australian householders, we found that an initially high level of engagement gave way over time to disinterest, neglect and in certain cases, technical malfunction. Additionally, preconceptions concerned with the “purpose” of the feedback were found to affect use. We propose expanding the scope of enquiry for eco-feedback in several ways, and describe how eco-feedback that better supports decision-making in the “maintenance phase”, i.e. once the initial novelty has worn off, may be key to longer term engagement.
Resumo:
Safety concerns in the operation of autonomous aerial systems require safe-landing protocols be followed during situations where the a mission should be aborted due to mechanical or other failure. On-board cameras provide information that can be used in the determination of potential landing sites, which are continually updated and ranked to prevent injury and minimize damage. Pulse Coupled Neural Networks have been used for the detection of features in images that assist in the classification of vegetation and can be used to minimize damage to the aerial vehicle. However, a significant drawback in the use of PCNNs is that they are computationally expensive and have been more suited to off-line applications on conventional computing architectures. As heterogeneous computing architectures are becoming more common, an OpenCL implementation of a PCNN feature generator is presented and its performance is compared across OpenCL kernels designed for CPU, GPU and FPGA platforms. This comparison examines the compute times required for network convergence under a variety of images obtained during unmanned aerial vehicle trials to determine the plausibility for real-time feature detection.
Resumo:
Background Managing large student cohorts can be a challenge for university academics, coordinating these units. Bachelor of Nursing programmes have the added challenge of managing multiple groups of students and clinical facilitators whilst completing clinical placement. Clear, time efficient and effective communication between coordinating academics and clinical facilitators is needed to ensure consistency between student and teaching groups and prompt management of emerging issues. Methods This study used a descriptive survey to explore the use of text messaging via a mobile phone, sent from coordinating academics to off-campus clinical facilitators, as an approach to providing direction and support. Results The response rate was 47.8% (n = 22). Correlations were found between the approachability of the coordinating academic and clinical facilitator perception that, a) the coordinating academic understood issues on clinical placement (r = 0.785, p < 0.001), and b) being part of the teaching team (r = 0.768, p < 0.001). Analysis of responses to qualitative questions revealed three themes: connection, approachability and collaboration. Conclusions This study demonstrates that use of regular text messages improves communication between coordinating academics and clinical facilitators. Findings suggest improved connection, approachability and collaboration between the coordinating academic and clinical facilitation staff.
Resumo:
The rapid development of the World Wide Web has created massive information leading to the information overload problem. Under this circumstance, personalization techniques have been brought out to help users in finding content which meet their personalized interests or needs out of massively increasing information. User profiling techniques have performed the core role in this research. Traditionally, most user profiling techniques create user representations in a static way. However, changes of user interests may occur with time in real world applications. In this research we develop algorithms for mining user interests by integrating time decay mechanisms into topic-based user interest profiling. Time forgetting functions will be integrated into the calculation of topic interest measurements on in-depth level. The experimental study shows that, considering temporal effects of user interests by integrating time forgetting mechanisms shows better performance of recommendation.
Resumo:
Big Data presents many challenges related to volume, whether one is interested in studying past datasets or, even more problematically, attempting to work with live streams of data. The most obvious challenge, in a ‘noisy’ environment such as contemporary social media, is to collect the pertinent information; be that information for a specific study, tweets which can inform emergency services or other responders to an ongoing crisis, or give an advantage to those involved in prediction markets. Often, such a process is iterative, with keywords and hashtags changing with the passage of time, and both collection and analytic methodologies need to be continually adapted to respond to this changing information. While many of the data sets collected and analyzed are preformed, that is they are built around a particular keyword, hashtag, or set of authors, they still contain a large volume of information, much of which is unnecessary for the current purpose and/or potentially useful for future projects. Accordingly, this panel considers methods for separating and combining data to optimize big data research and report findings to stakeholders. The first paper considers possible coding mechanisms for incoming tweets during a crisis, taking a large stream of incoming tweets and selecting which of those need to be immediately placed in front of responders, for manual filtering and possible action. The paper suggests two solutions for this, content analysis and user profiling. In the former case, aspects of the tweet are assigned a score to assess its likely relationship to the topic at hand, and the urgency of the information, whilst the latter attempts to identify those users who are either serving as amplifiers of information or are known as an authoritative source. Through these techniques, the information contained in a large dataset could be filtered down to match the expected capacity of emergency responders, and knowledge as to the core keywords or hashtags relating to the current event is constantly refined for future data collection. The second paper is also concerned with identifying significant tweets, but in this case tweets relevant to particular prediction market; tennis betting. As increasing numbers of professional sports men and women create Twitter accounts to communicate with their fans, information is being shared regarding injuries, form and emotions which have the potential to impact on future results. As has already been demonstrated with leading US sports, such information is extremely valuable. Tennis, as with American Football (NFL) and Baseball (MLB) has paid subscription services which manually filter incoming news sources, including tweets, for information valuable to gamblers, gambling operators, and fantasy sports players. However, whilst such services are still niche operations, much of the value of information is lost by the time it reaches one of these services. The paper thus considers how information could be filtered from twitter user lists and hash tag or keyword monitoring, assessing the value of the source, information, and the prediction markets to which it may relate. The third paper examines methods for collecting Twitter data and following changes in an ongoing, dynamic social movement, such as the Occupy Wall Street movement. It involves the development of technical infrastructure to collect and make the tweets available for exploration and analysis. A strategy to respond to changes in the social movement is also required or the resulting tweets will only reflect the discussions and strategies the movement used at the time the keyword list is created — in a way, keyword creation is part strategy and part art. In this paper we describe strategies for the creation of a social media archive, specifically tweets related to the Occupy Wall Street movement, and methods for continuing to adapt data collection strategies as the movement’s presence in Twitter changes over time. We also discuss the opportunities and methods to extract data smaller slices of data from an archive of social media data to support a multitude of research projects in multiple fields of study. The common theme amongst these papers is that of constructing a data set, filtering it for a specific purpose, and then using the resulting information to aid in future data collection. The intention is that through the papers presented, and subsequent discussion, the panel will inform the wider research community not only on the objectives and limitations of data collection, live analytics, and filtering, but also on current and in-development methodologies that could be adopted by those working with such datasets, and how such approaches could be customized depending on the project stakeholders.
Resumo:
Multiple-time signatures are digital signature schemes where the signer is able to sign a predetermined number of messages. They are interesting cryptographic primitives because they allow to solve many important cryptographic problems, and at the same time offer substantial efficiency advantage over ordinary digital signature schemes like RSA. Multiple-time signature schemes have found numerous applications, in ordinary, on-line/off-line, forward-secure signatures, and multicast/stream authentication. We propose a multiple-time signature scheme with very efficient signing and verifying. Our construction is based on a combination of one-way functions and cover-free families, and it is secure against the adaptive chosen-message attack.
Resumo:
We study two problems of online learning under restricted information access. In the first problem, prediction with limited advice, we consider a game of prediction with expert advice, where on each round of the game we query the advice of a subset of M out of N experts. We present an algorithm that achieves O(√(N/M)TlnN ) regret on T rounds of this game. The second problem, the multiarmed bandit with paid observations, is a variant of the adversarial N-armed bandit game, where on round t of the game we can observe the reward of any number of arms, but each observation has a cost c. We present an algorithm that achieves O((cNlnN) 1/3 T2/3+√TlnN ) regret on T rounds of this game in the worst case. Furthermore, we present a number of refinements that treat arm- and time-dependent observation costs and achieve lower regret under benign conditions. We present lower bounds that show that, apart from the logarithmic factors, the worst-case regret bounds cannot be improved.
Resumo:
Most of existing motorway traffic safety studies using disaggregate traffic flow data aim at developing models for identifying real-time traffic risks by comparing pre-crash and non-crash conditions. One of serious shortcomings in those studies is that non-crash conditions are arbitrarily selected and hence, not representative, i.e. selected non-crash data might not be the right data comparable with pre-crash data; the non-crash/pre-crash ratio is arbitrarily decided and neglects the abundance of non-crash over pre-crash conditions; etc. Here, we present a methodology for developing a real-time MotorwaY Traffic Risk Identification Model (MyTRIM) using individual vehicle data, meteorological data, and crash data. Non-crash data are clustered into groups called traffic regimes. Thereafter, pre-crash data are classified into regimes to match with relevant non-crash data. Among totally eight traffic regimes obtained, four highly risky regimes were identified; three regime-based Risk Identification Models (RIM) with sufficient pre-crash data were developed. MyTRIM memorizes the latest risk evolution identified by RIM to predict near future risks. Traffic practitioners can decide MyTRIM’s memory size based on the trade-off between detection and false alarm rates. Decreasing the memory size from 5 to 1 precipitates the increase of detection rate from 65.0% to 100.0% and of false alarm rate from 0.21% to 3.68%. Moreover, critical factors in differentiating pre-crash and non-crash conditions are recognized and usable for developing preventive measures. MyTRIM can be used by practitioners in real-time as an independent tool to make online decision or integrated with existing traffic management systems.